
DISTRIBUTED PRODUCTION
Chris Chambers
BBC R&D and EBU Project Group P/MDP

Broadcast production systems typically were built as a collection of “silo” or
“island” devices. However, with the increasing use of IT in production, and the
sharing of common resources such as storage and connectivity, the question
becomes: how best can we glue all this equipment together into an integrated
system? This is exactly what EBU Project Group P/MDP has been studying.

It is a fact of life that there will rarely, if ever, be global agreement on common standards in some
fields. Which nation will give up their national language for a universal “Esperanto”? Technology is
no different. Broadcasters will remember the “camps” of PAL and NTSC.

Accepting this fact leads us to
look for solutions that allow
interchange between different
“standards” – what we choose
to call Middleware. In the case
of PAL/NTSC, the answer was
the standards converter – an
early example of middleware.

At a more basic level, consider
the variety of different mains
power connectors which exist throughout the world. To enable your equipment to work anywhere, it
is necessary to have a different mains cable for each type of connector. And then came the middle-

ware – the universal mains adapter.

In broadcasting these days, every system tends to be a frame-
work; with endless possibilities, but only working if tightly inte-
grated with all of the other systems (frameworks) of the
organization. This can be very hard to achieve.

Even if you do reach some level of integration, full interoperability
is seldom achieved. It tends to be expensive, takes a lot of time to
configure and implement, and fails to fully realize the opportuni-
ties for flexibility. On top of that, the demands to constantly
change and optimize our workflows using these systems are
increasing.

We are missing the universal adapter between our systems!

System integration
Architectures for

Figure 1
A familiar problem with a well-known solution

System

1

System
4

System
…. ’n’

System

2

System
3

?

Figure 2
Where the universal adapter
is needed
EBU TECHNICAL REVIEW – January 2005 1 / 13
EBU Project Group P/MDP

DISTRIBUTED PRODUCTION
Scope of this article
For the purpose of this article, middleware should be seen as a collection of technologies which
combine applications, or parts of applications, in a common and structured way. Middleware doesn’t
achieve this alone. The management of middleware and the actual integration are of equal impor-
tance. For that reason, the P/MDP 1 Group set the scope of its work to be: System Integration
Architectures

Middleware is but one (vital) element in this environment. A collection of tools is the glue.

Scope of use: the value chain
Most broadcasters have a two-
tier value chain consisting of
Services and Programmes,
illustrated in Fig. 3. System
integration architectures and
the different middleware tech-
nologies affect the processes in
this chain as well as the
supporting processes.

The integration architecture
ensures that information and
functions are accessible from
all the process stages – from
early season planning to play-
out – via production, distribution
and transmission. It is even
relevant in the delivery platform where some data reaches the set-top box (e.g. the EPG).

Broadcast-specific scope
In many parts of our operations, we can benefit from integration techniques commonly used in other
industries. But some areas are more critical to broadcasters than to other industries. This is
because broadcasting deals with real-time rich media and not just common data in the form of text
and numbers:

1) Media asset management
Storage and archiving of our products: video, audio and interactive services. This is about the
general integration architecture between our assets and all of our other systems.

2) The production environment
Where can benefits and new ways of working be realized using integration technologies?

3) The play-out environment
We need to ensure data and content integrity from planning and scheduling, the production,
through play-out, to the end user.

4) Workflow management
We need to connect the workflows which relate to the processes in the whole value chain
across systems or modules of functionality.

1. P/MDP stands for “Middleware in Distributed programme Production”. The Group was created in autumn
2003 and consisted of various EBU members. The main contributions to its report and this article came
from: the BBC, BR, DR, the IRT, NRK, RAI, RTR, SVT and VRT.

Planning
& preparing

services

Buy
programmes

Produce
service

elements

Assemble
and deliver

service

Deliver
service

packages

Distribute
& transmit

service
packages

Receive, use
& interact

with services

Receive, use
& interact

with
programmes

Distribute
& deliver

programmes

Produce
programmes

Sell &
prepare

programmes

P
ro

g
ra

m
m

e
s

S
e

rv
ic

e
s

Objectives, strategy, tactics & management

Development, service, support & operation of:

Acquire & manage:

Marketing & promotion of: Programmes, services & brand

Archive

Rights

System operations

Administration

Figure 3
Typical broadcaster's value chain (source: DR)
EBU TECHNICAL REVIEW – January 2005 2 / 13
EBU Project Group P/MDP

DISTRIBUTED PRODUCTION
What is so great about a system integration architecture?
The arguments for your organization to establish and maintain a system integration architecture can
be summarized as follows (this is not a prioritised list):

Flexibility: fast changing work-processes and workflows need flexible access to functions and
data. High barriers between systems are falling or changing to small boundaries as modularity
is growing. A good system integration architecture and the appropriate middleware are helping
to provide this flexibility.

Speed: where functions and data have to be used across systems, middleware speeds devel-
opment and changes (in the long term, but not necessarily in the short term).

Cost: the costs of building and maintaining unique one-to-one integration between systems is
rapidly growing for larger systems. Changes are expensive as they need to be applied to more
than just the primary system. A hub-and-spoke approach is more efficient. Middleware can act
as a hub.

Standardization: as methods and interfaces are re-used, fewer components and skills are
needed. Having a way of handling integration makes it easier to decide what you don’t need to
do.

Data integrity, reliability and robustness: as more and more data are used across systems
and different work processes, a system integration architecture and some middleware solutions
ensure the data integrity across systems and situations of use. For horizontal systems, efforts
spent in making the evolution reliable, secure and robust can be concentrated in the service
layers rather than distributed over single applications.

New products and services: easy and secure access to information across systems opens up
opportunities for new products, especially on new delivery platforms.

Prevent lock-in by vendors: you can replace a sub-system from vendor A by an equivalent
system from vendor B, without having to reconfigure the rest of the system.

Overview: as common ways of achieving integration are established, the organization gets a
better overview; both due to the standardization and to the needed repository of information
about systems, functions, data, integrations, interfaces and metadata. This opens up opportu-
nities for stronger change management routines. More specifically, the ability to search within
data across systems is improved.

System planning: standardization allows technical planning departments to use tools which
will make the planning process much easier. The focus will no longer be fixed on specific tech-
nical problems but much more on workflows, or rather on optimizing the workflows.
Planning of complex broadcast-systems in future could be much more like “Lego™”.

Training: an understanding of the workflows in which the operators are involved will become
more necessary in the future than today. Therefore, not only will dedicated technical training for
a device or software application be necessary, but also education on understanding the whole
production chain. This can become much simpler if the system architecture is based on generic
and pre-defined processes rather than on proprietary structures.

Examples
Several EBU members have already gained experience with system integration architectures:

Bayerischer Rundfunk is implementing an IT-based play-out and production centre. It encom-
passes a messaging-based system for system integration.

Danish Radio is in the process of moving from a vertically to a horizontally integrated system
architecture. Standards and policies are established and both a broker and a concept for
service-oriented integration are in operation. This has been done in close connection with the
implementation of a DR metadata specification.
EBU TECHNICAL REVIEW – January 2005 3 / 13
EBU Project Group P/MDP

DISTRIBUTED PRODUCTION
BBC Research & Development is studying a completely horizontally integrated production
architecture. This project can be regarded as having the luxury of a “green field” situation,
trying to utilise the benefits of horizontal system integration to its fullest extent.

Key concepts
We are used to working with isolated systems, interfaced by people. These are systems in co-exist-
ence. Today this is changing. The main task of system integration today is to turn co-existing
systems into co-operating systems, to collect systems into “super-systems”, when appropriate and
efficient, and to optimize workflows.

Introducing layers

In the late nineties the primary view was that one had to connect
all systems or modules to each other directly. However, for a
large number of modules, this becomes almost unmanageable.
The alternative is to connect the modules via some common glue.
But this glue needs to be well-defined and widely accepted. The
development of a layered system architecture was a good first
step.

A system can be seen as split into layers in a horizontal architec-
ture where each layer is independently accessible. Systems
without this approach are referred to as vertical systems.

How many layers?

In this horizontal approach, the number of layers can differ.
Therefore it is generally called an n-tier horizontal architecture,
where n indicates the number of layers.

Usually the design starts with three layers, each with its own tasks:

1) Presentation layer -> provides input & output for the system;

2) Application Logic layer -> the “brains” of the system;

3) Data -> the memory or content of the system (databases and fileservers).

In many situations the concept can benefit from introducing a layer under the databases and file-
servers, taking into account that physical storage can differ. This then allows you to change or scale
the storage without changing the data layer. So the fourth layer would be:

4) Storage -> the physical place where data are put.

Open or closed systems

It is important to realize that there might be no connection between the actual construction of a
system and how it appears or reacts to the outside world. A system using the latest “horizontal”
technology 2 can still appear as a closed vertical system. The constraints may be imposed by
unpublished or licensed interfaces, or by proprietary additions to known application interfaces
(APIs), protocols, etc.

2. Such as portal servers, web-based user interfaces, modularised business logic on application servers,
and XML data servers.

System

Presentation

Application

Logic

Data

Figure 4
A layered system
EBU TECHNICAL REVIEW – January 2005 4 / 13
EBU Project Group P/MDP

DISTRIBUTED PRODUCTION
On the other hand, some older and non-layered systems have quite open interfaces, although there
is a tendency to refer to non-layered systems as vertical and closed.

In the real world, we are dealing with a complex mixture of scenarios, and the solutions tend to be
equally diverse.

Component-based systems

The layers mentioned are an abstraction, introduced to illustrate
logical groups within systems, which in development and daily
work are useful to treat separately.

We can go one step further and describe systems which are
component-based 3.

“ A component is a “black box” with known and
described interfaces which can be used without
knowing anything about the internal structure or
internal functionality of the box. ”

These components can be grouped inside the above-mentioned
layers, although some components work across layers as well.
As long as they stick to the rules in the above definition, that
should not be a problem.

Some of the components' interfaces should be openly accessible,
but not necessarily all. This can be achieved in many ways and is one area where the need for stand-
ardization arises. The main point to remember is that systems should be component-based.

Middleware: the glue
To solve the problems men-
tioned at the start of this article,
something was needed to
combine all these layers and
components in a flexible and effi-
cient way – some kind of “glue”.
This was originally referred to as
middleware, already suggesting
that no one really knew clearly
what it was.

One of the early techniques to
act as glue was the data-broker
(a hub and some adapters to
the systems). Without going in
to technical details, the concept
and expected benefits are illustrated in Fig. 6.

Fig. 7 combines the concept of middleware (glue) with the layers introduced earlier.

The way the middleware interconnects the data layer with the application (logic) and the presenta-
tion to the user, is by using communication via interfaces. These interfaces form the boundaries of

3. The term component-based is preferred to object-oriented because object-oriented is just one example
of a component-based design, e.g. a procedural design can also be component-based.

System

Presentation

Application

Data

Figure 5
A component-based system

N

3

2

1

N

3

2

1

... ...

Spokes

(adapters)

Glue in form of hub & spoke

(one kind of middleware)

N x (N-1) / 2 connections N connections

Cheap to do with few modules, but

complex and expensive to maintain.

Greater effort to start with, but

easier to maintain and scale.
Cheap to connect to.

Hub

Figure 6
Example of glue
EBU TECHNICAL REVIEW – January 2005 5 / 13
EBU Project Group P/MDP

DISTRIBUTED PRODUCTION
the “puzzle” pieces in Fig. 7. It
is important that the interfaces
allow for communication in a
common, flexible, structured,
efficient and re-useable way.

Where do components fit into
this?

As we discussed before,
systems are nowadays more
and more component-based.
Fig. 8 extends our layered
model with this notion.

The components are drawn as
little puzzle pieces, indicating
they have their own interfaces.
This means we can speak
about interfaces at multiple
levels: for example, the inter-
face to the data-layer or the
interface to a component within
that layer. Components could
be system components or
middleware components.
Working at component level is
leading us to another kind of
glue – indeed another integra-
tion technique: Web services.

Most common
integration types
The resulting system integra-
tion architecture depends on your particular business model (the products and operations) and your
particular IT environment. Here we describe four common integration types.

Message-based integration (copying data between systems)
The same data is needed in different systems and an automated exchange mechanism
provides copies of data in these systems and ensures data-integrity while doing so. It can be
set up as rule-based or event-based. Functionality is made available by an integration broker.

Data-carrying integration (Different systems access the same data)
Data exists as a single copy in a single location. All systems work real-time on the same
instance of data. Integration is achieved by agreement between the systems about the data
model they use, and about a common logic for reading and updating data. This is provided by a
data-carrying integration platform, primarily consisting of an application server and a database.

System

1

System

2

Application

logic

Data, storage & network

layer

Application

logic

S
y
s
te

m
 1

S
y
s
te

m
 2

Middleware

Presentation

layer

Figure 7
System concept, including interfaces
(based on a diagram by Bob Edge, Thomson GVG)

Data, storage & network

layer

S
y
s
te

m
 1

S
y
s
te

m
 2

Middleware

Presentation

layer

Application

logic

Application

logic

= component

Figure 8
Systems can be built out of many small components
EBU TECHNICAL REVIEW – January 2005 6 / 13
EBU Project Group P/MDP

DISTRIBUTED PRODUCTION
Portal integration (Wrapping of multiple user interfaces into a single one)

Employed where users require a more integrated user dialogue or interface than is provided by
the separate applications. Where individual customizing of the user interface is required, or
where certain functions should be automated, or where single logon is needed ... an integration
of the user interface is necessary. Web-based user interfaces provide integration via a portal.

Workflow (Mechanisms to co-ordinate events in systems)

Refers to automating or semi-automating of workflows, by integrating functionality and data. To
support tightly connected or integrated business processes it should be possible in advance to
define which actions need to take place when certain data are exchanged or updated. Work-
flow mechanisms can be found in each of the three former described integration types.

The above integration architecture concepts are related to planning, production, and play-out
systems, as well as the administrative back-office, financial and accounting systems. When it
comes to executing play-out or transfer of real-time, rich multimedia files (e.g. a 50 Mbit/s video file)
other tools and technologies than described above are used. However, the management, control
and reporting of this can be handled like any other kind of data in any other industry.

Middleware services for broadcasters

When setting up broadcasting facilities, this often means we have to solve recurrent problems. We
have learned that concepts and technologies are available which enable us to reuse solutions for
those problems. An example of such a concept is the Services-Oriented Architecture.

When using a Services-Oriented Architecture, one may ask the question whether there are special
middleware services needed for broadcasting.

Let us first try to find out what middleware services for broadcasters actually are.

System

1

System

2

System

2

System

1

Process

2

Process

1

Process

3

Process

4

Video

Workstation

Server

Laptop

computer

Data

Data
EBU TECHNICAL REVIEW – January 2005 7 / 13
EBU Project Group P/MDP

DISTRIBUTED PRODUCTION
Understanding services
A service is basically a special system component which can be invoked by other components
wanting a certain task to be performed on certain data, e.g. an authentication service which is
granting or denying access to resources. To be able to do this, it is necessary for the invoking
components to know what operations are available and how to ask for these operations. The speci-
fication of these is called a service interface specification.

How should such a service interface be specified?
The most efficient and reliable technique is to use modelling
methods; tools and technologies supporting the task of defining
the boundaries and behaviours of software components.

A useful strategy in designing a service architecture is to distin-
guish services into those specific to your industry, the broadcast
domain, and those which are not specific to a particular industry,
also known as pervasive services.

Broadcast domain model
A domain model describes the functional elements used in order
to provide solutions specific to a business domain, in our case
the broadcast domain. It should not describe the internal work-
ings of the (functional) elements, nor provide much detail about
them. Instead it must just encapsulate the essential aspects
related to the domain. The functional description should be
limited to that of the interfaces and should include the static defini-
tion as well as the dynamic behaviour.

A broadcast domain model should define all “bread & butter” serv-
ices specific to the broadcast domain, e.g.:

Essence transcoding;
Speech-to-text transcription;
Material copies management;
Material stream control.

The task for the users within a certain business domain is to specify their domain model and to benefit
from existing standards. This may be done in collaboration with vendors. The users' involvement is
particularly important since the domain model reflects the business which the users know best.

Pervasive services
Pervasive services provide functionality which is not specific to the broadcasting needs. Pervasive
services are reusable by other services and applications. The use of pervasive services allows us to
benefit from solutions worked out in other industries, for example:

Abbreviations
AAF Advanced Authoring Format

API Application Programming Interface

MXF Material eXchange Format

NTSC National Television System Committee (USA)

PAL Phase Alternation Line
SMPTE Society of Motion Picture and Television

Engineers
UML Unified Modelling Language
VTR Video Tape Recorder

Figure 9
This figure shows different
industry domains, including a
(currently hypothetical)
Broadcast Domain. The
“BR”, “DR” and “BBC” slices
illustrate different broadcast-
ers' usage of it.
EBU TECHNICAL REVIEW – January 2005 8 / 13
EBU Project Group P/MDP

DISTRIBUTED PRODUCTION
Authentication;

Session management;
Time references;
Workflow management.

For the pervasive services, the users should select available services and implementing technolo-
gies which are appropriate to support their business. The proper requirements have to be applied to
the services (e.g. the bandwidth needed and the desired network characteristics), to guarantee they
meet the users' specific operating conditions.

Different views

There are different types of players involved in the development of IT-based TV programme produc-
tion systems. These different roles require different views of the system which is modelled, for
example:

Planning Engineer View – a set of service definitions and high-level descriptions of their inter-
actions.

System Integrator View – a description of how to use a service.

The System Integrator View has to represent a high-level view of the interfaces of the services
and their dependencies on other services (e.g. the pervasive services).

System Developer View – all the detailed information about the components to be imple-
mented.

Modelling in the broadcast environment
Modelling is a widely used method in IT system design. As the broadcasting industry is making
more and more use of software solutions, the use of modelling techniques becomes more important
as well.

The use of models to describe technical systems is not a new idea. Block diagrams and connection
schemes are models also. The difference is that, with IT modelling techniques, the diagrams repre-
sent software systems and not necessarily physical objects.

Unified Modelling Language

UML provides different types of diagrams for the static design and the dynamic behaviour of IT
systems. A brief introduction to the use of different UML diagrams is provided below, using an
example which describes the process of recording with a VTR. Arguably the best known modelling
methodology is called UML (Unified Modelling Language). In the last 10 years it has established
itself as the predominant formal notation for the description of IT projects.

Use Case diagram

A Use Case Diagram gives an overview of what happens in a 'business process'. It does not explain
how the result is achieved, but only what happens, regardless of any specific product or solution.
Use Case diagrams are used to describe the interaction of actors and systems in two ways:

1) A drawing with formal icons for actors (representing roles, humans or systems, but never a job
description) and activities.
EBU TECHNICAL REVIEW – January 2005 9 / 13
EBU Project Group P/MDP

DISTRIBUTED PRODUCTION
2) A formalised text part defining
the actors, the preconditions
and the business rules rele-
vant for the Use Case.

Several Use Cases can be collected
into logical groups to form a drawing
of a Use Case scenario, including
text parts for each Use Case.

There are frameworks which give
some guidance in how to deal with
system analysis and description.
For more information look for MDA
in [1] and Zachmann in [2].

The vendors' perspective
Types of vendors
Current broadcast-system vendors form a heterogeneous group. Basically, there is a group of tradi-
tional broadcast vendors and a group of IT-originated companies, each approaching the customer
from a different angle.

Some traditional broadcast parties seem to have a stronger tendency to think in silo-based vertical
systems, while the other extreme is formed by some IT companies entering the market virtually
without knowledge of broadcasting, but equipped with a bag overflowing of IT standards nomencla-
ture. The first can be argued as undesirable due to its inherit “lock-in” character, while the second
may not prove any better as there still could be a “data lock-in”. That is: the system may be open,
but if you don't understand the data model inside, you still cannot use it.

The aforegoing sketches out the extremes but, in practice, both “camps” are moving towards a
better understanding of the customers' requirements (as is the customer himself). It seems that
some smaller companies in particular have a good nose for understanding the customers' specific
requirements.

Key observations
Vendors are opening up their systems

Openness is the norm in IT, but is only slowly becoming practice in the broadcast domain. One
reason for this is the large influence of traditional wholesale providers. The main driver to open up
is, quite simply, pressure from customers demanding openness.

Vendors put themselves in the centre

When vendors claim to interoperate with others, they often put themselves in the centre of the
system. Instead of offering a single service to the outside world (like plug-ins for your browser), they
argue that “others should interface with us”.

Middleware is known, but interoperability limited

Vendors are using middleware, but often only in their own product suites. For commercial reasons it
is not exposed to the outside world. Another reason is that there is a lack of semantics (“What does
the data this service provides mean?”). The net result is that interoperability between broadcast
applications using middleware is limited.

Play

Record

Stop
Play-out system

VTR

Figure 10
Use Case scenario for use of a video system
EBU TECHNICAL REVIEW – January 2005 10 / 13
EBU Project Group P/MDP

DISTRIBUTED PRODUCTION
Vendors are reactive

Vendors are reactive and not proactive; they will only implement when there is a demand (customer
project driven). The broadcasting market is relatively small and each broadcaster poses different
customisation requirements and/or a different expression of the same requirements. Some vendors
also remark that the broadcast industry is special in that much R&D is done by the customers them-
selves, which is not the case in the IT industry.

Middleware reliability is ok, but at a cost

In general the vendors do not see difficulties with middleware reliability, but they do warn it may not
be the best solution for each problem. The engineering effort to provide high reliability may be
higher than for traditional systems. Also, reliability should not be the single reason to use middle-
ware (but, for example, scalability + reliability).

Managing system integration
The cost for system integration can differ dramatically depending on how the work is managed. At
one end of the spectrum every integration is a stand alone solution with only one person capable of
handling development, maintenance, etc. At the other end, a corporate integration architecture is
implemented.

To boost economy, quality, capability, etc there is a need for standardization and streamlining of the
integration efforts. It is important to have a strategic scope that spans more than the current
projects. If possible this responsibility and governance should be centralized within the company –
the consultant company Gartner has named such a function Integration Competency Center, ICC.

As already stated, this is very much about managing and control. To deal with all this increasing
complexity and variety is much like working with quality assurance programs:

“ Describe what you do and do what you describe. ”

To move away from the situation where specialists are formed around each isolated system, and into
a world with a large variety of skills across systems, components and middleware, is a huge effort.

Standardization
There are two areas where standardization efforts would be welcome:

1) A common (core) metadata model

There is a lack of a common (core) metadata model. This is the top priority issue for most
vendors. Existing metadata specifications have not been very successful and are seen as too
large/vague to apply. There is a strong demand for a more modular and business-oriented
approach: e.g. a simple subset with a coherent structure. This must include the semantics
(= unambiguous meaning) of the elements it provides.

2) “Bread & butter” services

The business services commonly used by broadcasters, such as ingest, play-out and sched-
uling are the broadcasters' “bread & butter” services. It seems that standardization of middle-
ware / system integration architectures could best take place at this level. These primary serv-
ices could all be broken down into non-competitive and common technical services (play,
record, transfer, transcode, etc.) and all have a need to interface. Besides services, relevant
business objects should be specified as well. The specifications should not dictate technology,
EBU TECHNICAL REVIEW – January 2005 11 / 13
EBU Project Group P/MDP

DISTRIBUTED PRODUCTION
but allow for competition. Once the services are defined, it should be investigated if toolkits,
APIs, etc., would be of value.

Who should standardize this?

A combination of an IT organization (e.g. OMG [1]), together with a broadcast organization (e.g.
the EBU or SMPTE) would be preferable. Some manufacturers noted that they would like to
see a community effort using more Internet-based tools and less physical meetings, which
would also allow smaller parties to be involved: e.g. an open forum on interoperability.

When should it be standardized?

It seems there currently is not a strong urgency for standardizing middleware-related topics. Middle-
ware has been around for some time already (some claim for 15 years already) and as one manu-
facturer put it: “there is no immediate penalty if you don't use it”.

Also many manufacturers have just started to implement other important technologies, such as AAF/
MXF support in their products, and they need time to allow enough Return On Investment to be
generated.

However, in view of the developing convergence of traditional broadcasting techniques with IT ways
of working, and also because any development today has a strong business element, users now
require the ability to specify IT-based applications and business structures within their organizations.
It is now a matter of urgency that standardization work begins, to enable users to specify function-
ality between products.

Golden Rules

The experiences shared by the P/MDP Members resulted in a list of “Golden Rules” for broad-
casters, vendors and standards organizations. Ten are listed below – but see the full report [3] for
the complete list.

Table 1
Ten “golden rules” for system integration

Golden Rule Notes

1 Middleware is infrastructure Treat it as such: e.g. financially, management

2 Don't talk systems, talk services or functions Otherwise you will see a misleading picture

3 Clearly define your process workflows Look at middleware from the business perspective

4 Know your world Set up a central information repository

5 Own your world Define your vital business (objects) yourself

6 Partner with your vendor(s) Make sure it is clear where the risk is borne

7 Demand open modularity Proprietary combinations will lock you in

8 Demand open standards Proprietary interfaces are too limited

9 Demand free choice of storage Not one which is tied in with other components

10 Take real-time seriously Plan for it from the beginning, don't use quick fixes
EBU TECHNICAL REVIEW – January 2005 12 / 13
EBU Project Group P/MDP

DISTRIBUTED PRODUCTION
References
[1] http://www.omg.org

[2] http://www.zifa.com

[3] EBU doc. Tech 3300: The Middleware Report
EBU doc. Tech 3300-s: Supplement to the Middleware Report
Available via http://www.ebu.ch/en/technical/publications/tech3000_series/

Chris Chambers joined the BBC as an Engineering trainee and this year is his 37th

with the Corporation! Over the years, he has held a number of posts covering the
installation of broadcast facilities in Outside Broadcasts, Studios, Broadcast Infra-
structure and Data Services. He has also been involved with the strategic develop-
ment of broadcasting systems, looking into ATM- and IP-based networking
developments as well as file standards for broadcasting use. He has been a partici-
pant on a number of internal BBC groups covering these topics and has produced a
number of papers on these subjects.

Currently in his post at BBC R&D, Mr Chambers runs a small team investigating net-
works and storage. He has been heavily involved in developments using ATM network structures to support
live broadcasting within production areas, along with working on new standards within the AES and the IEC
to support the audio on such systems. A part of the work of his team is to support the Desktop Production
project within BBC R&D that aims to develop systems for complete broadcast and production structures
using standard IT components.

Chris Chambers continues to represent the BBC in EBU project groups and currently chairs two of these,
one working on the development of middleware technologies (P/MDP) and the other covering common con-
trol strategies for live structures (N/CNCS) – both of these areas can be applied to production and broad-
cast systems. He also chairs an AES standard working group on developing metadata structures and is
currently working on two IEC standardization projects.
EBU TECHNICAL REVIEW – January 2005 13 / 13
EBU Project Group P/MDP

http://www.omg.org
http://www.zifa.com
http://www.ebu.ch/en/technical/publications/tech3000_series/

