
1

EBU – Recommendation R 121

Material Exchange Format
Basic User Metadata Implementation

EBU Recommendation

Source: P/TV-FILE

Geneva
February 2007

 Page intentionally left blank. This document is paginated for recto-verso printing

EBU R 121 MXF – Basic User Metadata Implementation

3

Scope and applicability of this recommendation

This recommendation contains a list of basic provisions for MXF implementations.

These provisions constitute necessary conditions for reliable, system-wide application of user
Metadata that is carried in the header Metadata of MXF files or that is linked to the Contents of
MXF files via header Metadata identifiers.

All of these provisions can be implemented by manufactures regardless of the version, type or
nature of the user Metadata plug-in.

This recommendation does not specify how to apply the plug-in and linkage mechanisms, or which
descriptive Metadata schemes to use for certain applications.

The EBU encourages users and implementers to follow this recommendation for file interchange,
for implementation in their production systems and for implementing their products.

Conformance Notation

This document contains both normative text and informative text.

All text is normative except for that in the Introduction, any section explicitly labelled as
‘Informative’ or individual paragraphs that start with ‘Note:’.

Normative text describes indispensable or mandatory elements. It contains the conformance
keywords ‘shall’, ‘should’ or ‘may’, defined as follows:

‘Shall’ and ‘shall not’: Indicate requirements to be followed strictly and from which no
deviation is permitted in order to conform to the document.

‘Should’ and ‘should not’: Indicate that, among several possibilities, one is recommended as
particularly suitable, without mentioning or excluding others.

OR indicate that a certain course of action is preferred but not
necessarily required.

OR indicate that (in the negative form) a certain possibility or
course of action is deprecated but not prohibited.

‘May’ and ‘need not’ Indicate a course of action permissible within the limits of the
document.

Informative text is potentially helpful to the user, but it is not indispensable and it can be
removed, changed or added editorially without affecting the normative text. Informative text does
not contain any conformance keywords.

A conformant implementation is one that includes all mandatory provisions (‘shall’) and, if
implemented, all recommended provisions (‘should’) as described. A conformant implementation
need not implement optional provisions (‘may’) and need not implement them as described.

MXF – Basic User Metadata Implementation EBU R 121

4

 Page intentionally left blank. This document is paginated for recto-verso printing

EBU R 121 MXF – Basic User Metadata Implementation

5

Contents
Introduction ... 7

Carriage of user Metadata in MXF files ... 7

Linkage of external user Metadata to MXF files... 7

Recommendations .. 8

Recommendation for store and forward operations.. 8

Recommendation for processing MXF files... 8

Recommendation for user Metadata applications based on SMPTE 380M............................... 9

Documentation recommendation for vendors ... 9

Bibliography ... 9

Annex A: User requirements for the support of user Metadata in MXF implementations 11

Annex B: Features of the three Metadata carriage mechanisms... 13

B1. Carriage through MXF Header Metadata ... 13

B2. Carriage through generic container system item elements .. 13

B3. Carriage in specific areas of essence streams .. 13

Annex C: Documentation Template for vendors .. 15

MXF – Basic User Metadata Implementation EBU R 121

6

 Page intentionally left blank. This document is paginated for recto-verso printing

EBU R 121 MXF – Basic User Metadata Implementation

7

Material Exchange Format

Basic User Metadata Implementation

EBU Committee First Issued Revised Re-issued

PMC 2006

Keywords: MXF, Material Exchange Format, User Metadata, Descriptive Metadata

Introduction
An appealing feature of MXF is its flexible support of synchronised user Metadata that is carried in
the header Metadata of MXF files or that is linked to the contents of MXF files via header Metadata
identifiers.

These recommendations concerning the application of user Metadata in MXF have been deliberated
by EBU Project Group P/TV-FILE after discussions with MXF implementers and vendors.

Carriage of user Metadata in MXF files
User Metadata can be carried in MXF by the following means:

1) In MXF header Metadata

a) using the SMPTE 377M Descriptive Metadata plug-in mechanism;

b) using proprietary extensions of MXF structural Metadata sets;

2) In generic container system item elements;

3) In specific areas of essence streams (e.g. MPEG-2 Video ES user bits)

Each of the three carriage mechanisms supports a different set of features. Further details are
given in Annex B.

Linkage of external user Metadata to MXF files
MXF header Metadata uses globally unique identifiers such as the SMPTE 330M Unique Material
Identifier (UMID), the ISO-IEC 11578 Universal Unique Identifier (UUID) or identifiers that are
unique within a well-defined local context (such as Track ID values within a Package).

The values of these identifiers can be used:

1) to link between essence and Metadata stored within MXF files,

2) to link between the material stored in MXF files and external Metadata that could be stored in
databases or Metadata files,

3) to link between Metadata stored in MXF files and external Metadata that could be stored in
databases or Metadata files.

MXF – Basic User Metadata Implementation EBU R 121

8

Recommendations
The EBU recommends the following implementation parameters in order to support the application
of user Metadata within MXF environments:

Recommendation for store and forward operations
1) Store and forward applications shall preserve all user Metadata.

2) Store and forward applications shall preserve

a) all globally unique identifiers (GUID),

b) all locally unique identifiers that are used for the MXF source reference mechanisms, and

c) all timecode information.

3) Store and forward applications that employ lossy transcoding of essence or that change the
essence (such as partial copy) shall update the UMID according to SMPTE RP205.

Recommendation for processing MXF files
4) Applications that generate new MXF files from one or more MXF input files (e.g. partial copy or

editing applications) shall use the source reference mechanism to support tracking of material
and associated descriptive Metadata (e.g. user Metadata).

a) Material tracking shall be implemented such that the essence track source clips of the top-
level source packages of the new file reference the package and track in the original file.

b) The application shall permit the configuration of the essence track source reference
mechanism such that the source references point to either:

i) the material packages of the original files

Note: This can be interpreted as ‘recording’ a virtual ‘play-out’ of the material package of the original
file. It is needed to preserve linkage to Metadata that has been associated to the output timeline
of the original file either via the header Metadata plug-in mechanism or linked via header
Metadata ID values in external databases. When converting the material package of the original
file into a lower level source package of the new file, this method also allows to preserve linkage
to Metadata that has been associated to the stored material of the original file either via the
header Metadata plug-in mechanism or linked via header Metadata ID values in external
databases.

ii) the top level source packages of the original files

Note: This can be interpreted as applying an EDL to extract portions of the original essence containers.
It may not preserve linkage to Metadata that has been associated to the output timeline of the
original file, but preserves linkage to Metadata that has been associated to the stored material of
the original file either via the header Metadata plug-in mechanism or linked via header Metadata
ID values in external databases.

c) Lower-level source packages created using the source reference mechanism should be kept
internal to the file.

Note: This is needed to transparently support descriptive Metadata in certain production flows,
especially where user Metadata is generated during the production process and the temporary
MXF files and their Metadata are not registered with a Content management system.

d) Users shall be able to turn off the functionality to keep lower-level source packages internal
to the new MXF file.

Note: This is needed in order to filter (suppress) user Metadata in the new file.

EBU R 121 MXF – Basic User Metadata Implementation

9

Recommendation for user Metadata applications based on SMPTE 380M
5. Applications that define Metadata sets with SMPTE 380M-syntax shall identify themselves via a

unique ID value in the framework thesaurus name property of the production, clip and scene
framework sets.

Note: In this context, applications are primarily user applications such as the Eurvision News Exchange
or the newsroom system of a specific broadcaster and not a specific MXF application provided by a
specific vendor.

a) The unique ID value shall be a SMPTE UL that is registered in the SMPTE Labels Registry
(SMPTE 400M/RP224)

b) The unique ID value shall use the ‘urn:oid’ string encoding specified in RFC 3061.

Note: The motivation for these requirements is to enable receivers of such Metadata to discriminate
between different applications that use Metadata sets with SMPTE 380M-syntax.

6. In addition to the Universal Labels that identify the SMPTE 380M frameworks, the DM Schemes
property of the Preface shall also contain application specific Universal Labels.

Documentation recommendation for vendors
7. As part of their product documentation, vendors should provide detailed documentation

about the parameters and functionalities of the timecode implementation [see Annex C].

Bibliography
SMPTE 377M-2004 Television - Material Exchange Format (MXF) - File Format Specification

SMPTE 330M-2004 Television - Unique Material Identifier (UMID)

SMPTE 379M-2004 Television - Material Exchange Format (MXF) - MXF Generic Container

SMPTE 385M-2004 Television - Material Exchange Format (MXF) -Mapping SDTI-CP Essence and Metadata
into the MXF Generic Container

SMPTE 394M-2005 Television - Material Exchange Format (MXF) - System Scheme 1 for the MXF Generic
Container

ISO/IEC 11578 Information technology - Open Systems Interconnection - Remote Procedure Call
(RPC)

SMPTE RP 205 2000 Application of Unique Material Identifiers in Production and Broadcast Environments

SMPTE 380M-2004 Television - Material Exchange Format (MXF) – Descriptive Metadata Scheme-1

SMPTE 400M-2004 Television - SMPTE Labels Structure

SMPTE RP 224 Television - SMPTE Labels Registry

(IETF) RFC 3061 A URN Namespace of Object Identifiers

EBU BPN 071 EBU MXF Implementation tests, May 2006 (EBU Members only)

MXF – Basic User Metadata Implementation EBU R 121

10

 Page intentionally left blank. This document is paginated for recto-verso printing

EBU R 121 MXF – Basic User Metadata Implementation

11

Annex A: User requirements for the support of user Metadata in MXF
implementations

The EBU has identified the following user requirements for the implementation of user Metadata in
MXF files. These requirements abstract from specific user Metadata schemes. They focus on the
baseline functionality that is needed in order to transport and interchange user Metadata in MXF-
based systems.

1) Store and forward applications need to be transparent to user Metadata carried in MXF files.

2) Store and forward applications need to be transparent to user Metadata stored in external
databases.

3) Applications which generate new MXF files from one or more input MXF files (i.e. partial
restore, editing) need to be implemented such that it is possible to find Metadata which was
associated to the original material.

4) Basic implementation of user Metadata needs to be independent of the specific user Metadata
scheme or schemes that are used by an organisation.

5) When exporting files, it needs to be possible to eliminate all user Metadata and source material
links.

6) SMPTE 380M defines a general framework to represent and encode user Metadata. Users apply
these frameworks by specifying the precise use and semantic for their application. In order to
reliably use and merge user Metadata in environments where multiple applications generate and
use SMPTE 380M-defined sets, the DMS-1 instances need to identify the application
specification.

MXF – Basic User Metadata Implementation EBU R 121

12

 Page intentionally left blank. This document is paginated for recto-verso printing

EBU R 121 MXF – Basic User Metadata Implementation

13

Annex B: Features of the three Metadata carriage mechanisms

B1. Carriage through MXF Header Metadata
The carriage through MXF Header Metadata can be implemented in two ways: either via the
SMPTE 377M Descriptive Metadata plug-in mechanism, or via proprietary extensions of MXF
Structural Metadata sets.

The first method implies that a set of special Metadata sets (descriptive Metadata frameworks) is
defined or chosen among the available standards (e.g. DMS-1) and instantiated in the Header
Metadata of MXF files. Frameworks can be directly linked to the Structural Metadata sets of MXF via
the standard plug-in mechanism. Designers of user applications can choose whether to associate
the frameworks on static Metadata tracks (i.e. Metadata are valid globally) or on timeline or event
tracks (i.e. specifying to which temporal portion of the material the Metadata refer to), depending
on the specific application purpose. Every MXF decoder should be able to identify the presence of
the linked frameworks and may be able to extract them from the Header Metadata and present
them to the driving application without keys translation and data decoding. Sub-sets referred inside
the frameworks may not be recognised and extracted. If standard descriptive Metadata frameworks
are used, compliant decoders should be able to identify the complete structure of Metadata
(frameworks and linked sets), to decode the keys against the semantic labels and data from their
data-encoding pattern.

The second method implies that proper extensions of the structural Metadata sets defined for MXF
are defined and implemented (DM Segment and/or DM Source Clip), by e.g. adding new propertys
or new structures (i.e. properties constituting strong references and hierarchies of Metadata sets
referenced by those properties) to them. Not all MXF decoders may be able to identify extended
structural sets, given that the KLV keys for these extended sets shall be different from the ones
defined in the standard for the basic (not extended) sets. If different applications extend a set by
the same property (i.e. SMPTE Metadata dictionary elements identified by the same SMPTE UL), but
with different semantics (i.e. meaning of the property in the context of the set) successful
interchange of information will not be possible.

B2. Carriage through generic container system item elements
This technique allows applications to store descriptive Metadata in the Generic Container System
Item Elements [see SMPTE 385 and SMPTE 394]. With this mechanism, potentially each Content
Package (e.g. each video frame) can be associated to a specific instance of Metadata. Metadata can
be encoded in Global Sets, Local Sets or Packs. Each System Item Element is represented by a
distinct set or pack. With the use of multiple elements in the System Item, different data sets can
be associated to the same Content package at the same time. Specifications must be written to
define the use of these sets inside the System Item. Basic MXF decoders may be able to access
System Item elements inside the Essence Container Streams and to select those referring to the
different kinds of essence tracks via the Track Number information.

B3. Carriage in specific areas of essence streams
This technique allows the carriage of Metadata items encoded in some specific areas of the essence
streams, e.g. MPEG-2 Video Elementary Stream User bits. These Metadata cannot be accessed by
any basic MXF decoder, and specific extensions to basic elementary stream decoders (e.g. MPEG
video decoders) may be needed to recover Metadata from the encoded stream.

MXF – Basic User Metadata Implementation EBU R 121

14

 Page intentionally left blank. This document is paginated for recto-verso printing

EBU R 121 MXF – Basic User Metadata Implementation

15

Annex C: Documentation Template for vendors

1. Store and forward Applications
a. Does the application preserve all user Metadata? If not, which user Metadata

is preserved and which user Metadata is lost? (specify)
b. Does the application preserver all globally unique identifier? If not,

which identifiers are preserved and which identifiers are modified? (specify)
c. Does the application preserve all locally unique identifiers that are used for

the MXF source reference mechanism? If not, which identifiers are preserved
and which identifiers are modified? (specify)

d. Does the application preserve all timecode information? If not, which
Timecode information is preserved and which Timecode information is lost? (specify)

e. If the application employs lossy transcoding of Essence, or changes the Essence,
does it update the Package ID values (i.e. UMIDs) accordingly?

2. Processing MXF Files
a. Does the application support material tracking via the source reference mechanism?
b. Which of the source reference mechanism configuration options does

the application support [see 4)b)]? (specify)
c. Does the application support (i.e. create and maintain) file-internal

lower level source packages? (specify)
d. It is possible to turn off (i.e. suppress or filter) lower level source packages? (specify)

3. Metadata Applications based in SMPTE 380M
a. Is the (user-) application identified by a SMPTERP 224 registered UL value

in the framework thesaurus property of the production, clip and scene
framework sets? If not, how is the application identified? (specify)

b. How is the application identifier encoded? (specify)
c. Is the application identifier value also listed in the DM Schemes property of the Preface set?

