

ETSI TS 102 822-3-2 V1.6.1 (2010-07)

Technical Specification

Broadcast and On-line Services: Search, select, and
rightful use of content on personal storage systems

("TV-Anytime");
Part 3: Metadata;

Sub-part 2: System aspects in a uni-directional environment

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 2

Reference
RTS/JTC-TVA-46-03-02

Keywords
broadcasting, content, data, TV, video

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2010.

© European Broadcasting Union 2010.
All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM, TIPHONTM, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered

for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

LTE™ is a Trade Mark of ETSI currently being registered
for the benefit of its Members and of the 3GPP Organizational Partners.

GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 3

Contents

Intellectual Property Rights .. 6

Foreword ... 6

Introduction .. 7

1 Scope .. 8

2 References .. 9

2.1 Normative references ... 9

2.2 Informative references .. 10

3 Definitions, abbreviations and mnemonics .. 10

3.1 Definitions .. 10

3.2 Abbreviations ... 11

3.3 Mnemonics ... 12

4 System mechanisms in a unidirectional environment .. 12

4.1 Overview .. 12

4.1.1 Main features of a unidirectional environment ... 12

4.1.2 Access methods .. 13

4.1.3 Definition of a TV-Anytime metadata description ... 13

4.1.4 TV-Anytime metadata description size .. 13

4.2 Metadata general delivery framework .. 14

4.2.1 Introduction to fragmentation ... 14

4.2.2 Introduction to encoding ... 14

4.2.3 Introduction to encapsulation .. 14

4.2.4 Introduction to Indexing ... 15

4.2.5 Logical decoder architecture ... 15

4.3 Metadata description fragmentation ... 16

4.3.1 TVA metadata fragments .. 17

4.3.1.1 TVAMain fragment ... 18

4.3.1.2 MetadataOriginationInformation fragment ... 19

4.3.1.3 ProgramInformation fragment... 20

4.3.1.4 GroupInformation fragment .. 20

4.3.1.5 OnDemandProgram and OnDemandService fragment ... 21

4.3.1.6 BroadcastEvent fragment .. 22

4.3.1.7 Schedule fragment ... 22

4.3.1.8 ServiceInformation fragment .. 24

4.3.1.9 CreditsInformation fragments ... 24

4.3.1.9.1 PersonName fragment ... 24

4.3.1.9.2 OrganizationName fragment ... 25

4.3.1.10 PurchaseInformation fragment .. 25

4.3.1.11 Review fragment ... 25

4.3.1.12 User Description information .. 26

4.3.1.13 ClassificationScheme fragments ... 26

4.3.1.13.1 CSAlias fragment .. 26

4.3.1.13.2 ClassificationScheme fragment ... 26

4.3.1.14 Segmentation ... 26

4.3.1.14.1 SegmentInformation fragment ... 27

4.3.1.14.2 SegmentGroupInformation fragment ... 27

4.3.1.15 Package Fragment ... 28

4.3.1.16 Interstitial Campaign Fragment ... 28

4.3.1.17 RMPI Fragment ... 28

4.3.1.18 Coupon Description Fragment .. 29

4.3.1.19 TargetingInformation Fragment .. 29

4.3.1.20 InterstitialBreak Fragment .. 30

4.3.1.21 Rule Fragment ... 31

4.3.1.22 Recording Cache Fragments ... 31

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 4

4.3.1.22.1 Request Fragment .. 31

4.3.1.22.2 Replace Fragment .. 31

4.3.1.22.3 Expire Fragment .. 31

4.3.1.23 PushDownloadProgram fragment ... 32

4.3.2 Fragment Identification and Versioning ... 32

4.3.3 Element ordering .. 32

4.3.4 TVA access unit .. 33

4.3.5 Use of TVAIDType, TVAIDRefType and TVAIDRefsType .. 33

4.3.6 Use of ID, IDRef, XPath and xml:lang ... 34

4.4 Fragment encoding ... 34

4.4.1 TVA-init message ... 34

4.4.1.1 Overview ... 34

4.4.2 MPEG-7 system profile .. 35

4.4.2.1 DecoderInit.. 35

4.4.2.1.1 UnitSizeCode ... 36

4.4.2.1.2 InitialDescription ... 36

4.4.2.2 FragmentUpdateCommand ... 36

4.4.2.2.1 Guidelines for the use of the FragmentUpdateUnit ... 36

4.4.2.3 ContextMode ... 38

4.4.2.4 TV-Anytime codec ... 39

4.4.2.4.1 Classification scheme wrapper .. 39

4.4.2.4.2 dateTime Codec ... 39

4.4.2.4.3 date codec .. 40

4.4.2.4.4 Zlib optimized decoder .. 40

4.5 Carriage of TV-Anytime data .. 42

4.5.1 Containers ... 42

4.5.1.1 Carriage of containers ... 42

4.5.1.2 Classification of containers ... 42

4.5.1.3 Container identification ... 42

4.5.2 Container versioning ... 42

4.5.2.1 Container syntax ... 43

4.5.2.2 Container map ... 44

4.5.2.2.1 Container map requirements .. 44

4.6 Fragment encapsulation .. 44

4.6.1 Encapsulation format .. 44

4.6.1.1 Encapsulation structure ... 45

4.6.1.2 Moved fragments structure ... 46

4.6.1.3 Fragment_Reference formats .. 46

4.6.1.3.1 Referencing a BiM encoded fragment ... 46

4.6.1.4 Data repository .. 46

4.6.1.4.1 Binary data repository ... 47

4.6.1.5 Alternative Encoding formats ... 48

4.7 Fragment Management ... 48

4.7.1 Fragment Id ... 48

4.7.2 Fragment Add ... 48

4.7.3 Fragment Update .. 48

4.7.4 Fragment Move ... 48

4.7.5 Fragment Delete .. 48

4.8 Indexing .. 49

4.8.1 Introduction... 49

4.8.2 Requirements .. 49

4.8.3 Carriage of Indexing Information ... 50

4.8.4 Data repository .. 50

4.8.4.1 String repository .. 50

4.8.5 Index structures ... 52

4.8.5.1 Identification of indices ... 53

4.8.5.1.1 Use of Ids... 53

4.8.5.1.2 Use of XPath ... 53

4.8.5.2 Introduction to the multi-key index ... 54

4.8.5.3 Index List .. 55

4.8.5.4 Index ... 58

4.8.5.4.1 Field Value Ordering ... 58

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 5

4.8.5.5 Multi_field_sub_index .. 61

4.8.5.5.1 Single Layer Structures ... 61

4.8.5.5.2 Multi Layer Structures ... 61

4.8.5.6 Fragment locators structure ... 66

4.8.5.7 Fragment_locator formats ... 66

4.8.5.7.1 Referencing fragments in another container .. 66

4.8.5.7.2 Referencing a fragment within the same container ... 67

4.8.6 Binary representation of Simple Types ... 67

4.8.7 Indexes based on Classification Schemes ... 68

4.9 Notion of Validation ... 68

4.10 Extensibility of the TV-Anytime schema .. 68

4.10.1 Introduction... 68

4.10.2 Receiver support for non backwards and forwards compatible versions .. 68

4.10.3 Extensibility mechanisms supporting forwards and Backwards Compatibility .. 69

4.10.4 Extensibility rules ... 69

Annex A (informative): Bibliography ... 71

History .. 75

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 6

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by Joint Technical Committee (JTC) Broadcast of the European
Broadcasting Union (EBU), Comité Européen de Normalisation ELECtrotechnique (CENELEC) and the European
Telecommunications Standards Institute (ETSI).

NOTE: The EBU/ETSI JTC Broadcast was established in 1990 to co-ordinate the drafting of standards in the
specific field of broadcasting and related fields. Since 1995 the JTC Broadcast became a tripartite body
by including in the Memorandum of Understanding also CENELEC, which is responsible for the
standardization of radio and television receivers. The EBU is a professional association of broadcasting
organizations whose work includes the co-ordination of its members' activities in the technical, legal,
programme-making and programme-exchange domains. The EBU has active members in about
60 countries in the European broadcasting area; its headquarters is in Geneva.

European Broadcasting Union
CH-1218 GRAND SACONNEX (Geneva)
Switzerland
Tel: +41 22 717 21 11
Fax: +41 22 717 24 81

The present document is part 3, sub-part 2 of a multi-part deliverable covering Broadcast and On-line Services: Search,
select and rightful use of content on personal storage systems ("TV-Anytime"), as identified below:

Part 1: "Benchmark Features";

Part 2: "Phase 1 - System description";

Part 3: "Metadata":

 Sub-part 1: "Phase 1 - Metadata schemas";

 Sub-part 2: "System aspects in a uni-directional environment";

 Sub-part 3: "Phase 2 - Extended Metadata Schema";

 Sub-part 4: "Phase 2 - Interstitial metadata";

Part 4: "Phase 1 - Content referencing";

Part 5: "Rights Management and Protection (RMP)";

Part 6: "Delivery of metadata over a bi-directional network";

Part 7: "Bi-directional metadata delivery protection";

Part 8: "Phase 2 - Interchange Data Format";

Part 9: "Phase 2 - Remote Programming".

http://webapp.etsi.org/IPR/home.asp

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 7

Introduction
The present document is based on a submission by the TV-Anytime forum (http://www.TV-Anytime.org).

"TV-Anytime" (TVA) is a full and synchronized set of specifications established by the TV-Anytime Forum. TVA
features enable the search, selection, acquisition and rightful use of content on local and/or remote personal storage
systems from both broadcast and online services.

TS 102 822-1 [7] and TS 102 822-2 [8] set the context and system architecture in which the standards for Metadata,
Content referencing, Bi-directional metadata and Metadata protection are to be implemented in the TV-Anytime
environment. TS 102 822-1 [7] provides benchmark business models against which the TV-Anytime system architecture
is evaluated to ensure that the specification enable key business applications. TS 102 822-2 [8] presents the TV-Anytime
System Architecture. These two documents are placed ahead of the others for their obvious introductory value. Note
that these first two documents are largely informative, while the remainder of the series is normative.

The features are supported and enabled by the specifications for Metadata (TS 102 822-3-1 [9], TS 102 822-3-2 (the
present document), TS 102 822-3-3 [10] and TS 102 822-3-4 [11]), Content Referencing (TS 102 822-4 [12]), Rights
Management (TS 102 822-5-1 [13] and TS 102 822-5-2 [14]), Bi-directional Metadata Delivery (TS 102 822-6-1 [15],
TS 102 822-6-2 [16] and TS 102 822-6-3 [17]) and Protection (TS 102 822-7 [18]), Interchange Data Format
(TS 102 822-8 [19]) and Remote Programming (TS 102 822-9 [20]). All Phase 1 and 2 Features listed in
TS 102 822-1 [7] are enabled by the normative TV-Anytime tools specifications.

The metadata specifications TS 102 822-3-1 [9], TS 102 822-3-3[10], TS 102 822-3-4 [11], TS 102 822-8 [19] and
TS 102 822-9 [20] address the description language, structure and semantics of TV-Anytime metadata descriptions. The
present document introduces new network agnostic technologies used to process these descriptions for the purpose of
transmission in a unidirectional environment.

http://www.tv-anytime.org/

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 8

1 Scope
The present document is one in a series of Technical Specification documents produced by the TV-Anytime Forum.
These documents establish the fundamental specifications for the services, systems and devices that will conform to the
TV-Anytime standard, to a level of detail that is implementable for compliant products and services.

TS 102 822-1 [7] and TS 102 822-2 [8] set the context and system architecture in which the standards for Metadata,
Content referencing, Bi-directional metadata and Metadata protection are to be implemented in the TV-Anytime
environment. TS 102 822-1 [7] provides benchmark business models against which the TV-Anytime system architecture
is evaluated to ensure that the specification enable key business applications. TS 102 822-2 [8] presents the TV-Anytime
System Architecture. These first two documents are largely informative, while the remainder of the series is normative.

Although each in the series of documents is intended to stand alone, a complete and coherent sense of the TV-Anytime
system standard can be gathered by reading all the specification documents in numerical order.

Figure 1 depicts the combined scope of the TV-Anytime Specifications on Metadata TS 102 822-3-1 [9],
TS 102 822-3-3 [10], TS 102 822-3-4 [11], TS 102 822-8 [19], TS 102 822-9 [20] and the present document "System
Aspects in a Unidirectional Environment".

� Metadata access interfaces for applications

� Description language for metadata types

� Metadata types and associated semantics

�
Encoding and encapsulation of metadata for
uni-directional delivery

� Requirements on delivery layer

� Format and semantics of delivery layer

S
co

pe
 o

f
th

e
T

vA
 m

et
ad

at
a

st
an

d
ar

d

Figure 1: Overview of the scope of TVA Specification on Metadata and System

The metadata specifications TS 102 822-3-1 [9], TS 102 822-3-3[10], TS 102 822-3-4 [11], TS 102 822-8 [19] and
TS 102 822-9 [20] address the description language, structure and semantics of TV-Anytime metadata descriptions. The
present document introduces new network agnostic technologies used to process these descriptions for the purpose of
transmission in a unidirectional environment.

The actual format and semantics of the delivery layer are specific to the particular uni-directional environment in which
TV-Anytime is deployed. However, in order for the encoding and encapsulation mechanisms to operate as intended the
delivery layer must meet certain requirements. These normative requirements are defined in annex B of
TS 102 822-2 [8].

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 9

2 References
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

2.1 Normative references
The following referenced documents are necessary for the application of the present document.

[1] ISO/IEC 10646 (2003): "Information technology - Universal Multiple-Octet Coded Character Set
(UCS)".

[2] XML Schema, W3C Recommendations (version 20010502).

NOTE: Available at: http://www.w3.org/TR/2001/REC-xmlschema-0-20010502,
 http://www.w3.org/TR/2001/REC-xmlschema-1-20010502,
 http://www.w3.org/TR/2001/REC-xmlschema-2-20010502.

[3] IEEE 754-2008: "IEEE Standard for Floating-Point Arithmetic".

[4] ISO/IEC 15938-1 (2002): "Information technology - Multimedia content description interface -
Part 1: Systems".

[5] ISO/IEC 15938-2 (2002): "Information technology - Multimedia content description interface -
Part 2: Description definition language".

[6] Zlib: "The Zlib API".

NOTE: Available at: http://www.gzip.org/zlib.

[7] ETSI TS 102 822-1: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime"); Part 1: Benchmark Features".

[8] ETSI TS 102 822-2: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime"); Part 2: Phase 1 - System description".

[9] ETSI TS 102 822-3-1: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime"); Part 3: Metadata; Sub-part 1: Phase 1 - Metadata
schemas".

[10] ETSI TS 102 822-3-3: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime"); Part 3: Metadata; Sub-part 3: Phase 2 - Extended
Metadata Schema".

[11] ETSI TS 102 822-3-4: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime"); Part 3: Metadata; Sub-part 4: Phase 2 - Interstitial
metadata".

[12] ETSI TS 102 822-4: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime"); Part 4: Phase 1 - Content referencing".

[13] ETSI TS 102 822-5-1: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime"); Part 5: Rights Management and Protection (RMP)
Sub-part 1: Information for Broadcast Applications".

http://docbox.etsi.org/Reference
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502
http://www.w3.org/XML/Schema
http://www.gzip.org/zlib

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 10

[14] ETSI TS 102 822-5-2: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime"); Part 5: Rights Management and Protection (RMP)
Sub-part 2: RMPI binding".

[15] ETSI TS 102 822-6-1: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime"); Part 6: Delivery of metadata over a bi-directional
network; Sub-part 1: Service and transport".

[16] ETSI TS 102 822-6-2: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime"); Part 6: Delivery of metadata over a bi-directional
network; Sub-part 2: Phase 1 - Service discovery".

[17] ETSI TS 102 822-6-3: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime"); Part 6: Delivery of metadata over a bi-directional
network; Sub-part 3: Phase 2 - Exchange of Personal Profile".

[18] ETSI TS 102 822-7: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime Phase 1"); Part 7: Bi-directional metadata delivery
protection".

[19] ETSI TS 102 822-8: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime"); Part 8: Phase 2 - Interchange data format".

[20] ETSI TS 102 822-9: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime"); Part 9: Phase 2 - Remote Programming".

[21] ISO/IEC 8601: "Data elements and interchange formats - Information interchange - Representation
of dates and times".

2.2 Informative references
The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

Not applicable.

3 Definitions, abbreviations and mnemonics

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

application: specific set of functions running on the PDR

NOTE: Some applications use metadata, either automatically or under consumer control.

head end: source of emission of the transport stream where metadata is inserted

metadata: data about content

EXAMPLE: The title, genre and summary of a television programme.

NOTE: In the context of TV-Anytime, metadata also includes consumer profile and history data.

MPEG: ongoing effort by the Motion Pictures Expert Group (working group SC29 WG11 of ISO/IEC) to specify a
standard set of content-related metadata applicable to a broad range of applications

NOTE: Defined by TV-Anytime in TS 102 822-3-1 [9].

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 11

partial description: reconstructed portion of the TV-Anytime metadata description in the PDR obtained after having
decoded a subset of the metadata fragment stream

NOTE: The present document instantiates the TV-Anytime schema and should therefore be schema valid with
respect to it.

segment: continuous portion of a piece of content, for example a single news topic in a news programme

segmentation: process of creating segments from a piece of content

transport stream: transport stream is made up of the A/V and/or the TV-Anytime data streams including the metadata

TVA access unit: container which holds one or more TVA fragments when carried over the transport stream

TVA fragment: self-consistent atomic portion of a metadata description sent to the decoder

TVA metadata description: actual document instantiating the TVA schema which is to be sent to the PDR

NOTE: The present document may be subject to partial updates in time using the fragmentation mechanism. In
any case, it should be schema valid with respect to the TVA schema.

TVA metadata fragment stream: set of the many TVA fragments constituting a single TVA metadata description and
inserted in the transport stream received by the decoder

TVA MPEG-7 profile: implementation profile of the ISO/IEC 15938-1 [4] standard, adopted by TV-Anytime for the
encoding of the metadata description as specified in the present document

TVA schema: set of rules describing the syntax and semantics of the metadata

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

AU Access Unit
BiM Binary format of MPEG-7
CRID Content Reference IDentifier

NOTE: An identifier for content that is independent of its location.

DDL Description Definition Language

NOTE: The language used to define description schemes in MPEG-7 (see ISO/IEC 15938-2 [5]).

DL Delivery Layer
DSM-CC Digital Storage Media Command and Control
ECG Electronic Content Guide

NOTE: A means of presenting available content to the consumer, allowing selection of desired content.

GMT Greenwich Mean Time
IPR Intellectual Property Rights
MPEG Motion Pictures Expert Group
PDR Personal Digital Recorder
TVA TV-Anytime
UI User Interface
URI Uniform Resource Identifier
UTF Universal character set Transformation Format
XML eXtensible Markup Language
XPath XML Path Language

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 12

3.3 Mnemonics
For the purposes of the present document, the following mnemonics are defined to describe the different data types
used:

bslbf: Bit string, left bit first, where "left" is the order in which bit strings are written. Bit strings are generally written
as a string of 1 s and 0 s within single quote marks, e.g. "1000 0001". Blanks within a bit string are for ease of reading
and have no significance.

reserved: A binary syntax element whose length is indicated in the syntax table. The value of each bit of this field shall
be set to "1". These bits may be used in the future for TVA defined extensions.

uimsbf: Unsigned integer, most significant bit first (big-endian).

vluimsbf8: Variable length coded unsigned integer, most significant bit first. The size of vluimsbf8 is a multiple of one
byte. The first bit of each byte specifies if set to "1" that another byte is present for this vluimsbf8 code word. The
unsigned integer is encoded by the concatenation of the seven least significant bits of each byte belonging to this
vluimsbf8 code word.

vluimsbf5: Variable length code unsigned integer, most significant bit first. The first n bits which are 1 except for the
n-th bit which is 0, indicates that the integer is encoded by n times 4 bits.

4 System mechanisms in a unidirectional environment

4.1 Overview

4.1.1 Main features of a unidirectional environment

Unidirectional environments deliver content and metadata from the transmitting device (head-end) to the terminal
device Personal Digital Recorder (PDR) over a one-way link. No communication is possible from the PDR to the
head-end.

TVA fragments

Delivery Layer

Terminal

A/V
content

Figure 2: Unidirectional environment

The restrictions imposed by a unidirectional environment mean that a TV-Anytime metadata delivery system needs to
have the following attributes.

All the TV-Anytime metadata descriptions required by the applications running on the PDR will need to be available in
the streams provided by the DL to the terminal at the time when those applications need them.

Since the head-end is never advised that the PDR is connected and no acknowledgement is provided to indicate that the
data has been correctly transmitted, the data will need to be broadcast cyclically during the time that they are potentially
needed by the applications.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 13

Unidirectional environments are in practice limited in the amount of bandwidth that can be allocated to metadata, the
size occupied by the TV-Anytime metadata description in the transport stream needs to be kept as small as possible.

4.1.2 Access methods

Resources available to PDRs will vary, as will the nature of different unidirectional environments. Because of this it is
anticipated that there are a number of ways in which a receiver may wish to acquire and navigate TV-Anytime metadata
descriptions. The present document has been designed to support the following methods of acquisition:

• Method 1: Acquire from the metadata stream and cache the data to disk with the receiver provides its own
methods of navigation.

• Method 2: Use the TVA Indexing solution to enable online navigation of the metadata stream.

• Method 3: Cache both TVA indexing information and data to disk to provide an enhanced version of
method 2.

4.1.3 Definition of a TV-Anytime metadata description

A TV-Anytime metadata description is the present document, which is to be sent to the PDR. It is produced in
accordance with the schema specified in the TV-Anytime metadata specification (see TS 102 822-3-1 [9], clause 6,
TS 102 822-3-3 [10], TS 102 822-3-4 [11], TS 102 822-8 [19], TS 102 822-9 [20]). TV-Anytime has selected the
MPEG-7 DDL language [5], based on XML schema [2], to define its schema. MPEG-7 DDL is used to define the
syntax, the types and default values that comprise the TV-Anytime specification. A TV-Anytime description can therefore
be represented as an XML document instantiating the TV-Anytime schema and containing a single root element called
TVAMain. Within the TVAMain element any number of TV-Anytime types can be instantiated. Such a description can
then be declared schema valid with respect to the TVA schema.

4.1.4 TV-Anytime metadata description size

In many systems a TV-Anytime description can become very large. As an example, a valid TV-Anytime document could
contain all the descriptive data supplied by a single provider to feed an ECG for the next 15 days. The data-set could
consist of a set of descriptions for the whole list of programmes, series and groups of contents which are going to be
played out for this period, the full schedule of all the related events, the description of the channels on which they are
going to be broadcast, the classification scheme tables, the cast list tables, etc. This entire dataset is contained in the
same document.

Sending this dataset as an XML document is inefficient for the following reasons:

• XML is a verbose textual format, making an XML document carrying this amount of data very large. In an
environment with restricted bandwidth this will result in slow download times.

• Not all of the information carried will be relevant to the terminal at any one instance. Some part of the
description may require to be accessed often whilst other parts may only be accessed occasionally.

• Some parts of an XML document may need to be updated without affecting other parts (e.g. modification of a
single schedule event if one programme is replaced by another).

• Some parts of an XML document may need to be accessed and updated more often and more efficiently than
the rest of the data set (e.g. dynamic segmentation metadata).

In order to overcome the problems associated with delivering TV-Anytime metadata as a single, homogenous document,
TV-Anytime defines fragmentation, encoding, encapsulation and indexing mechanisms to apply to the TV-Anytime
metadata descriptions before being transmitted to the terminal in a unidirectional environment.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 14

4.2 Metadata general delivery framework
The delivery of TV-Anytime metadata can be viewed as five distinct processes.

Fragment

Encode Encapsulate Transmit

Index Transmit

TVA
Description

Figure 3: Processes associated with delivery of metadata

4.2.1 Introduction to fragmentation

Fragmentation is the generic decomposition mechanism of a TVA metadata description into self-consistent units of
data, called TVA fragments. The definition of TVA fragment types allowed by TV-Anytime can be found in clause 4.3.

The self-consistency capability of a TVA fragment means that:

• Fragments can be obtained in a random order.

• Each fragment can be transmitted and updated independently.

• After a fragment has been received and decoded, the resulting partial description is valid with respect to the
TVA schema.

The set of all TVA fragments constituting a single TVA metadata description is transmitted to the terminal within a
unidirectional environment as a stream of data. This stream is termed a TVA metadata fragment stream.

A TVA metadata fragment stream shall always be accessed via the TVA-init message which represents the entry point,
as described in clause 4.4.1, followed by the TVA fragment containing the TVAMain root element, as described in
clause 4.3.1.1. Optionally, the TVAMain fragment may be included in the TVA-init message as indicated in
clause 4.4.1.

The transport of TVA metadata shall be fragmented as defined in the present document.

4.2.2 Introduction to encoding

To enable the efficient (in terms of bandwidth, navigability and updating) delivery of data within a unidirectional
environment, it is necessary to represent the TVA metadata fragments in a binary format.

TV-Anytime has chosen the MPEG-7 BiM method as defined in ISO/IEC 15938-1 [4] (MPEG-7 Systems part) as the
preferred method that would facilitate wide interoperability. However TV-Anytime appreciates that in some controlled
environments, it may be desirable to enable the delivery of metadata using alternate encoding systems. To allow this,
appropriate hooks are provided where necessary and the means to indicate the method of encoding used.

4.2.3 Introduction to encapsulation

Once the fragments have been encoded they need to be encapsulated. The process of encapsulation provides further
information to enable a receiving device to manage a set of transmitted TVA fragments. A receiver needs to be able to
uniquely identify a fragment within the TVA metadata fragment stream and also to be able to identify when the data
within a fragment changes. This information is provided by the encapsulation layer.

For the transmission of fragments, the encapsulation mechanism shall be used.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 15

4.2.4 Introduction to Indexing

Within a TV-Anytime metadata fragment stream there are likely to be many hundreds of fragments. Due to the volume
of information necessary to provide the enhanced functionality expected of a PDR it is important that there is an
efficient mechanism for locating information from within the TVA metadata fragment stream. Indexing provides this
functionality by allowing multiple views on the TVA metadata description. In addition to enable a device to quickly
find a fragment of interest, indices can also for example be used to provide enhanced UI functionality such as an A-Z
listing for Content Titles, Genre Listing, etc.

Indexing is an optional part of the present document, however it is seen as a powerful mechanism when TVA metadata
is to be delivered to receivers that have limited processing and storage capabilities.

4.2.5 Logical decoder architecture

The components of the logical decoder architecture are shown below. Each of these components has a specific role in
the process of reconstructing a TVA description or in the navigation of the TVA fragments via the indexing system.

Delivery Layer

Binary Decoder

Metadata Manager

fragment_version
fragment_id TVA fragment

Index decoder

Index Manager

version Index Data

Delivery Layer

Data Containers Index Containers

TVA Application

Change
Notification

Fragment
Request/Response

Search
Request/Response

Schema
Manager

PDR

Management Layer

Figure 4: Functional metadata processing architecture
in a unidirectional environment

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 16

• Delivery Layer: The delivery layer provides the mechanism on which the TVA metadata fragment stream is
transmitted. The system shall locate the TVA-init message within the delivery layer, to initialize the metadata
management system. The TVA-init provides information about the encoding of the TVA fragments and
whether Indexing data is available. Once the metadata management system has been configured, the system is
ready to process TVA fragments and indexing data. TVA fragments are encapsulated within a data container.
Depending on the caching model used one or more data containers e.g. acquire container "N" or acquire all
data containers - are requested by the management system.

• Binary Decoder: The binary decoder takes a data container and decodes the TVA fragment and delivers the
decoded TVA fragment along with the fragments version and unique identifier to the Metadata Manager. The
schema to which all fragments within the TVA metadata fragment stream shall conform is defined within the
DecoderInit part of the TVA-init message.

• The Schema Manager: This is a black box component in the terminal which provides the Binary Decoder
with details about the schemas, declared in the TVA-init message and instantiated by the related TVA
metadata description. It is a requirement that the terminal knows the schema used to produce a TVA metadata
description prior to processing the TVA metadata fragment stream. However, the method in which a PDR
acquires this schema is out of scope for the current version of the TV-Anytime metadata standard.

• Metadata Manager: This component is responsible for managing requests from the Management Layer for
TVA fragments and also for notifying the Management layer of changes to fragments previously acquired
from the TVA metadata fragment stream.

• Management Layer: The role of the management layer is very much dependant on the functionality of the
TVA Application which is interacting with this layer. In some instances it will just notify the Application
when a change as occurred to the TVA fragment stream e.g. new fragment, deleted fragment takes. In other
cases it will ask for a specific fragment, which involves an index lookup. The Management Layer is then
responsible for using the Index to locate a fragment and then using the Metadata manager to load the fragment
from the TVA metadata fragment stream.

• Index Decoder: This component takes an Index container from the delivery layer and makes the raw data
available to the Index Manager, along with the index container version.

• Index Manager: This component takes search requests from the Management Layer and returns a set of
matching references to fragments, which the Management layer then sends to the Metadata manager for
loading. To perform the search the appropriate Index containers are loaded and the search performed using the
supplied parameters.

4.3 Metadata description fragmentation
To enable the efficient delivery, updating and navigation of a TV-Anytime metadata description, a number of normative
TVA fragment types have been defined.

A fragment is the ultimate atomic part of a TV-Anytime metadata description that can be transmitted independently to a
terminal. A fragment shall be self consistent in the sense that:

• It shall be capable of being updated independently from other fragments.

• The way it is decoded, processed and accessed shall be independent from the order in which it is transmitted
relative to other fragments.

• The decoding of a fragment and its addition to the partial description shall give a TV-Anytime schema valid
description. Note that a partial description must have at least the fragment delivering the root element
(TVAMain).

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 17

Frament "A" (e.g. TVAMain)

Fragment "B"
(e.g. ProgramInformation)

Fragment "C"
(e.g. ServiceInformation)

Figure 5: Fragmentation of a TV-Anytime metadata description

When an update occurs to one or more elements or attributes within a previously transmitted fragment, the entire
fragment must be transmitted again i.e. no mechanisms for sub-fragment updates are provided.

4.3.1 TVA metadata fragments

The TV-Anytime metadata description can be split into a number of standardized types of self contained fragments.
These TV-Anytime normative fragments are defined as follows.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 18

4.3.1.1 TVAMain fragment

The TVAMain fragment is special since every TVA fragment stream must contain one instance of this fragment type.
The TVAMain fragment contains the TVAMain / ExtendedTVAMain root element plus a limited range of child nodes.

Figure 6: UML-like representation of a TVAMain fragment

As can be seen from the representation in figure 6 the TVAMain fragment shall contain child elements down to and
including the following:

• MetadataOriginationInformationTable.

• ClassificationSchemeTable.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 19

• ProgramInformationTable.

• GroupInformationTable.

• ProgramLocationTable.

• ServiceInformationTable.

• CreditsInformationTable.

• ProgramReviewTable.

• SegmentInformationTable:

- SegmentList; SegmentGroupList.

• PurchaseInformationTable.

• PackageTable.

• RMPITable.

• CouponTable.

• TargetingInformationTable.

• InterstitialTargetingTable:

- RulesTable.

- RecordingCacheTable.

- InterstitialTable.

The presence of and number of each of these types shall conform to the TV-Anytime schema. Elements that are children
of these element types form fragments of their own and so shall not be included within the TVAMain /
ExtendedTVAMain fragment.

It should be noted that updates to TVAMain/ExtendedTVAMain would typically be infrequent and an update to this
fragment would cause the decoder to be re-initialized.

4.3.1.2 MetadataOriginationInformation fragment

The MetadataOriginationInformation element, as defined in TS 102 822-3-1 [9], shall form a single TVA fragment.

The MetadataOriginationInformation element is a child of the MetadataOriginationInformationTable, which is a
member of the TVAMain fragment.

Figure 7: UML-like representation of a MetadataOriginationInformation fragment

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 20

4.3.1.3 ProgramInformation fragment

A ProgramInformation fragment is one of the key attractor types of a TVA system (TS 102 822-3-1 [9]), it carries
an element of type ProgramInformationType and all child nodes thereof. This type contains descriptive
information about a piece of content, the content being identified by a CRID.

The ProgramInformationElement is a child element of the ProgramInformationTable, which forms part
of the TVAMain fragment.

Figure 8: UML-like representation of a ProgramInformation fragment

The ProgramInformation fragment is completely self-contained with one exception. Within the CreditsItem,
which is a child element of the CreditList element in the BasicDescription element, the optional
PersonNameIDRef and OrganizationNameIDRef elements use TVAIDRefType attributes to reference
TVAIDType attributes within corresponding entries within the CreditsInformationTable. This enables
optimization in cases where a Credit Item description is common to more than one programme. In such a case, a
CreditsItem only needs to be defined once e.g. for all the episodes of a Soap Opera. The guidelines given for the
use of TVAIDType/TVAIDRefType in clause 4.3.5 should however be taken into account when assigning and using
these ID values.

4.3.1.4 GroupInformation fragment

A GroupInformation fragment contains an element of type GroupInformationType and all child nodes
thereof. This contains descriptive information about a conceptual content group e.g. Series, Serial, Collection, etc. The
GroupInformationElement is a child element of the GroupInformationTable, which forms part of the
TVAMain fragment (TS 102 822-3-1 [9]).

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 21

Figure 9: UML-like representation of a GroupInformation fragment

The GroupInformation fragment is completely self contained except for that described for the
ProgramInformation fragment, namely within the CreditsItem, the optional PersonNameIDRef and
OrganizationNameIDRef elements which the TVAIDRefType attribute which points to an entry within the
CreditInformationTable. The guidelines given for the use of TVAIDType/TVAIDRefType in clause 4.3.5
should thus be taken into account when assigning and using these ID values.

4.3.1.5 OnDemandProgram and OnDemandService fragment

Within a unidirectional environment the OnDemandProgramType and the OnDemandServiceType are seen to
be of limited use.

However if a broadcaster wishes to transmit OnDemand program location information, a complete
OnDemandProgram or an OnDemandService element instantiating respectively one of these types shall form a
single fragment. Both the OnDemandProgram and the OnDemandService elements are child members of the
ProgramLocationTable, which forms part of the TVAMain fragment.

An attribute of type TVAIDRefType (TS 102 822-3-1 [9]) is used by the serviceIDRef attribute within the
OnDemandServiceType to reference the associated service information. It points to an element of type
ServiceInformationType having a serviceId attribute, with a value equal to the serviceIDRef. This
latter value shall be unique within the TVA metadata description. And the guideline in clause 4.3.5 on the assignment
and use of TVAIDType/TVAIDRefType values should be taken into account when dealing with these values.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 22

4.3.1.6 BroadcastEvent fragment

The BroadcastEventType has been designed to represent dynamic events in an environment where frequent
updates are required (TS 102 822-3-1 [9]).

A BroadcastEvent fragment is thus an instance of the BroadcastEventType, a child element of the
ProgramLocationTable, which forms part of the TVAMain fragment.

Figure 10: UML-like representation of a BroadcastEvent fragment

A TVAIDRefType value is used by the serviceIDRef attribute to identify the service on which the event
described by this BroadcastEvent fragment will be broadcast. It points to the serviceId attribute, of a
ServiceInformation element in the same metadata description, whose type is TVAIDType. This latter value
shall be unique within the TVA metadata description. The guideline in clause 4.3.5 on the assignment and use of
TVAIDType/TVAIDRefType values should be taken into account when dealing with these values.

4.3.1.7 Schedule fragment

The Schedule type provides an alternative way to that of the BroadcastEvent type for describing events within a
broadcast system. It provides a mechanism to group a number of consecutive events together, which span a given time
period on a single service (TS 102 822-3-1 [9]).

The use of the ScheduleType for describing broadcast events has the following properties:

• To extract a single event from a schedule, the entire schedule must be decoded to locate the event of interest.

• The schedule type has been designed to aid large and collective updates. An update to a single event, within
the schedule, will cause the entire Schedule fragment to be updated. However this is often not a problem, as
subsequent events are often affected by a single event change.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 23

As a result, the Schedule fragment instantiates the ScheduleType and is a child element of the
ProgramLocationTable, which forms part of the TVAMain fragment.

Figure 11: UML-like representation of a Schedule fragment

A TVAIDRefType value is used by the serviceIDRef attribute to identify the service on which the events
described by the schedule will be broadcast. It should be managed the same way as described in the previous clause for
the BroadcastEvent fragment by taking into account the guidelines in clause 4.3.5 on the assignment and use of
TVAIDType/TVAIDRefType values.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 24

4.3.1.8 ServiceInformation fragment

A ServiceInformation fragment contains details about a single Service within a broadcast system
(TS 102 822-3-1 [9]).

A ServiceInformation fragment is an instance of a ServiceInformationType and a child of the
ServiceInformationTable, which is a member of the TVAMain fragment.

Figure 12: UML-like representation of a ServiceInformation fragment

4.3.1.9 CreditsInformation fragments

The CreditsInformationTable element instantiates the CreditsInformationTableType (TS 102 822-3-1 [9]).

It gathers together details about the people and organizations involved in the production of the different content items
described in the metadata description. It is used to lighten the size of the description of each content item, by allowing
the use of a pointer reference to a PersonName or OrganizationName element contained within the
CreditsInformationTable. It may be useful, for example, where several content items share the same credit information,
in which case the information only need to be instantiated once.

4.3.1.9.1 PersonName fragment

A PersonName element instantiates a PersonNameType and shall form a single TVA fragment
(TS 102 822-3-1 [9]). The PersonName element is a child element of the CreditsInformationTable, where
the CreditsInformationTable forms a member of the TVAMain fragment.

Figure 13: UML-like representation of PersonNameType

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 25

4.3.1.9.2 OrganizationName fragment

The OrganizationName element shall form a single TVA fragment (TS 102 822-3-1 [9]).

The OrganizationName element is a child element of the CreditsInformationTable, where the
CreditsInformationTable forms a member of the TVAMain fragment.

4.3.1.10 PurchaseInformation fragment

The PurchaseInformation element shall form a single TVA fragment (TS 102 822-3-1 [9]).

The PurchaseInformation element is a child of the PurchaseInformationTable, which is a member of
the TVAMain fragment.

Figure 14: UML-like representation of a PurchaseInformation fragment

4.3.1.11 Review fragment

A Review element instantiates the MediaReviewType and contains a single review for a content item identified by a
CRID (TS 102 822-4 [12]).

The Review fragment is thus a child element of the ProgramReviewTable, which is a member of the TVAMain
fragment (TS 102 822-3-1 [9]).

Figure 15: UML-like representation of a ProgramReviews fragment

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 26

4.3.1.12 User Description information

The transmission of a UserDescription element is not seen to be of any practical use within a unidirectional
environment and so no fragmentation structure has been defined.

4.3.1.13 ClassificationScheme fragments

ClassificationSchemes elements are used to define a list of controlled terms used by a number of TVA data
types e.g. Genre Classification, AV Coding types, etc (TS 102 822-3-1 [9]). In addition CSAlias elements, used as
aliases to the ClassificationSchemes, can be provided to reduce the size of the reference required to identify the
Classification scheme used.

4.3.1.13.1 CSAlias fragment

The CSAlias fragment instantiates the ClassificationSchemeAliasType defined by MPEG-7 and is a child
of the ClassificationSchemeTable, which is a member of the TVAMain fragment (TS 102 822-3-1 [9]).

A single CSAlias element shall form a single CSAlias fragment.

4.3.1.13.2 ClassificationScheme fragment

The ClassificationScheme element is an instance of the ClassificationSchemeType.

The ClassificationScheme fragment is thus a ClassificationScheme element, child of the
ClassificationSchemeTable, which is a member of the TVAMain fragment (TS 102 822-3-1 [9]).

Figure 16: UML-like representation of a ClassificationScheme fragment

4.3.1.14 Segmentation

Segmentation Information can be used to enhance the users viewing experience by providing the ability to view content
in a non-linear way. Segmentation information is split up into two groups according to the two schema types they use,
namely the SegmentInformationType and the SegmentGroupInformationType.

The SegmentInformationType provides details about the segment e.g. start offset, duration, description, etc.

The SegmentGroupInformationType enables the Grouping of segments so for example to define the way in
which content, should be navigated (TS 102 822-3-1 [9]).

The SegmentGroupInformation and SegmentInformation make extensive use of
TVAIDType/TVAIDRefType and the guideline define in clause 4.3.5 should be followed.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 27

4.3.1.14.1 SegmentInformation fragment

A SegmentInformation element instantiates the SegmentInformationType and describes a single segment
of a content item. It is seen as the smallest updateable unit and so shall form a single fragment.

A SegmentInformation fragment is thus a SegmentInformation element, which is a child of the
SegmentList element, which forms part of the TVAMain fragment (TS 102 822-3-1 [9]).

Figure 17: UML-like representation of a SegmentInformation fragment

4.3.1.14.2 SegmentGroupInformation fragment

A SegmentGroupInformation element instantiates the SegmentGroupInformationType.

It allows the definition of a segment group, namely a set of references to SegmentInformation elements, which
can be used to define a mode of navigation or a virtual piece of content e.g. Highlights of a football match. It is also
possible for a segment group to reference another segment group providing hierarchical navigation of the content
similar to a table of contents.

A SegmentGroupInformation fragment is thus a SegmentGroupInformation element, which is a child of
the SegmentGroupList element, which forms part of the TVAMain fragment (TS 102 822-3-1 [9]).

Figure 18: UML-like representation of a SegmentGroup fragment

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 28

4.3.1.15 Package Fragment

The Package element (TS 102 822-3-3 [10]) shall form a single TVA fragment.

The Package element is a child of the PackageTable, which is a member of the TVAMain fragment.

Figure 19: UML-like representation of a Package fragment

4.3.1.16 Interstitial Campaign Fragment

The InterstitialCampaign element (TS 102 822-3-4 [11]) shall form a single TVA fragment.

The InterstitialCampaign element is a child of the InterstitialCampaignTable, which is a member
of the TVAMain fragment.

Figure 20: UML - like representation of a InterstitialCampaign fragment

4.3.1.17 RMPI Fragment

The RMPIDescription element (TS 102 822-5-1 [13]) shall form a single TVA fragment.

The RMPIDescription element is a child of the RMPITable, which is a member of the TVAMain fragment.

Figure 21: UML - like representation of a RMPIDescription fragment

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 29

4.3.1.18 Coupon Description Fragment

The CouponDescription element (TS 102 822-3-3 [10]) shall form a single TVA fragment.

The CouponDescription element is a child of the CouponTable, which is a member of the TVAMain fragment.

Figure 22: UML - like representation of a CouponDescription fragment

4.3.1.19 TargetingInformation Fragment

The TargetingInformation element (TS 102 822-3-4 [11]) shall form a single TVA fragment.

The TargetingInformation element is a child of the TargetingInformationTable, which is a member
of the TVAMain fragment.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 30

Figure 23: UML - like representation of a TargetInformation fragment

4.3.1.20 InterstitialBreak Fragment

The InterstitialBreak element (TS 102 822-3-4 [11]) shall form a single TVA fragment.

The InterstitialBreak element is a child of the InterstitialTable, which is a member of the TVAMain
fragment.

Figure 24: UML - like representation of an InterstitialBreak fragment

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 31

4.3.1.21 Rule Fragment

The Rule element (TS 102 822-3-4 [11]) shall form a single TVA fragment.

The Rule element is a child of the RulesTable, which is a member of the TVAMain fragment.

Figure 25: UML - like representation of a Rule fragment

4.3.1.22 Recording Cache Fragments

Figure 26: UML - like representation of the ContentListType used by the following fragments

4.3.1.22.1 Request Fragment

The Request element (TS 102 822-3-4 [11]) shall form a single TVA fragment.

The Request element is a child of the RecordingCacheTable, which is a member of the TVAMain fragment.

4.3.1.22.2 Replace Fragment

The Replace element (TS 102 822-3-4 [11]) shall form a single TVA fragment.

The Replace element is a child of the RecordingCacheTable, which is a member of the TVAMain fragment.

4.3.1.22.3 Expire Fragment

The Expire element (TS 102 822-3-4 [11]) shall form a single TVA fragment.

The Expire element is a child of the RecordingCacheTable, which is a member of the TVAMain fragment.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 32

4.3.1.23 PushDownloadProgram fragment

The PushDownloadType has been designed to allow content being pushed and cached by a service provider onto a
receiving device (TS 102 822-3-1 [9]). Subsequently, content can be accessed and viewed from its storage location as if
delivered from e.g. an on-demand server and this until expiry time.

A PushDownloadProgram fragment is thus an instance of the PushDownloadType, a child element of the
ProgramLocationTable, which forms part of the TVAMain fragment.

Figure 27: UML-like representation of a PushDownloadProgram fragment

A TVAIDRefType value is used by the serviceIDRef attribute to identify the service by which the event
described by this PushDownloadProgram fragment has been provided. It points to the serviceId attribute, of a
ServiceInformation element in the same metadata description, whose type is TVAIDType. This latter value
shall be unique within the TVA metadata description. The guideline in clause 4.3.5 on the assignment and use of
TVAIDType/TVAIDRefType values should be taken into account when dealing with these values.

4.3.2 Fragment Identification and Versioning

Many element types within the TVA schema have both a fragmentVersion and a fragmentId attributes, it is
recommended not to use these attribute to identify a fragment or to indicate fragment versions in a unidirectional
environment. This is because it is required to partially decode the fragment to extract the required information.

A means of assigning an identifier to a fragment and a version to a fragment at the appropriate level is described in
clause 4.6.

4.3.3 Element ordering

When two or more elements of the same type occur within a metadata description, it is assumed that their order within
the parent element is unimportant e.g. ProgramInformation elements within the
ProgramInformationTable. Therefore, it is not a requirement to maintain the order of elements across the
delivery system.

Where a parent element can contain more than one element type e.g. PersonName and OrganizationName within
the CreditsInformationTable - it is the responsibility of the receiving terminal to ensure that the order of
element types is maintained, with respect to the TVA schema.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 33

4.3.4 TVA access unit

The TVA access unit is defined as being a container that holds one or more TVA fragments. A TVA fragment shall be
wholly contained within a single container. TVA fragments within a TVA access unit can be of any type, provided that
an individuals fragment type can be identified without fragment decoding.

Where BiM is used as the encoding solution a TVA access unit shall take the form of an MPEG-7 Access Unit (AU),
with the TVA fragments type being identified, using the ContextPath within BiM.

It is the responsibility of the broadcaster to manage the number of TVA fragments within a TVA Access Unit, bearing
the following in mind:

• The overhead of transmitting a container - The smaller the container the less efficient it will be in terms of
bandwidth usage.

• The updating of a single TVA fragment within a container will cause the container to be updated.

4.3.5 Use of TVAIDType, TVAIDRefType and TVAIDRefsType

In a number of instances within the TVA metadata schema, elements make use of the TVAIDType, TVAIDRefType
and TVAIDRefsType data types.

These replace the respective standard XML ID, IDREF and IDREFS data types. They are provided to enable elements
to reference other elements within the same TVA metadata description. However as a TVA metadata description is split
up into a number of TVA fragments and transmitted as a TVA metadata fragment stream, the following issues should
be noted:

• The synchronization of TVAIDType, TVAIDRefType and TVAIDRefsType values between fragment
versions.

• The possibility of changing references when dealing with partial metadata descriptions.

A TVA metadata fragment stream is treated as if it were a single XML instance document. The value assigned to an
attribute instantiating a TVAIDType shall be unique within a single TVA metadata description. Also, all attributes
instantiating the TVAIDRefType or the TVAIDRefsType must make references to elements containing an attribute
of type TVAIDType, only within the same TVA metadata description. No provision is currently made for referencing
elements across multiple TVA metadata descriptions.

The guideline rules for use of TVAIDType, TVAIDRefType and TVAIDRefsType are therefore:

• The value assigned to the TVAIDType element must be unique within a TVA metadata description.

• In case of an update to an element with an attribute of type TVAIDType, it may be appropriate to create a
totally new element with a new TVAIDType value when this element changes significantly e.g. in the Credits
list when an actor dies. This is to ensure that the original description can still be referenced from within the
metadata description, rather than an updated one.

• Where there is a choice between an inline instantiation and the use of a reference, the broadcaster should
weigh up the added complexity of using a TVAIDType/TVAIDRefType (additional level of indirection)
against the potential bandwidth savings.

• It is important when thinking about the delivery dynamics to ensure that an element being referenced is
available within the TVA metadata description, before or at the same time as the element, making the
reference. The reverse is also true; when deleting elements, it is important to remove the element that makes
the reference, before the element being referenced.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 34

4.3.6 Use of ID, IDRef, XPath and xml:lang

As explained in clause 4.3.5, the use of ID and IDRef should be avoided under the following circumstances.

Some datatypes within the MPEG7 stub schema make use of these built-in XML schemas datatypes. Unless the scope
of these types is restricted to a single fragment, they should not be used. The reason is that it is not possible to maintain
referential integrity across two or more fragments.

Some datatypes within the MPEG7 stub schema make use of XPath expressions. For similar reasons, the scope of
XPath resolution shall be restricted to a single fragment. The use of XPath resolution across two or more fragments
should also be avoided because canonical form of the XML source document is not preserved.

Some datatypes within the MPEG7 stub schema make use of xml:lang attributes. The scope of this attribute should be
restricted to a single fragment.

4.4 Fragment encoding

4.4.1 TVA-init message

4.4.1.1 Overview

The TVA-init message specified in the present clause is used to configure parameters required for the decoding of the
TVA metadata fragment stream. There shall only be one TVA-init associated with a TVA metadata fragment stream.

A delivery layer suitable for conveying a TVA metadata fragment streams, shall provide a means of delivering the
TVA-init message to the terminal before any fragment decoding occurs.

Syntax No. of bits Mnemonic
TVA-init {
 EncodingVersion 8 uimsbf
 IndexingFlag 1 bslbf
 reserved 7
 DecoderInitptr 8 bslbf
 if(EncodingVersion == '0x01') {
 BufferSizeFlag 1 bslbf

 PositionCodeFlag 1 bslbf
 reserved 6

 CharacterEncoding 8 uimsbf
 if (BufferSizeFlag=='1') {
 BufferSize 24 uimsbf
 }
 }
 if(IndexingFlag) {

 IndexingVersion 8 uimsbf
 }
 reserved 0 or 8+
 DecoderInit() bslbf
}

EncodingVersion: This field indicates the method of encoding used to represent the TVA metadata fragments. Table 1
provides the possible set of values for this field.

Table 1: Table of values for the EncodingVersion parameter

Value Encoding Version
0x00 Reserved
0x01 TVA MPEG_7 profile (BiM)

ISO/IEC 15938-1 [4]
0x02 - 0x0F TVA reserved
0x10 - 0xFF User defined

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 35

IndexingFlag: Indicates if one or more indexes are carried within the stream.

DecoderInitptr: This field conveys a pointer, which defines the offset in bytes from the start of the TVA-init message
where the DecoderInit can be found.

BufferSizeFlag: Indicates if a BufferSize for the Zlib coded is defined. If not defined the decoder shall assume a
maximum of 1 000 bytes.

PositionCodeFlag: This flag indicates if the BiM contextPath Position Code is used in the encoded fragment. When set
to "0" the Position Code within the contextPath shall be ignored. In that case, it must be noted that the canonical format
of the instance description is not preserved, i.e. the order of the elements within the rebuilt description is not preserved.

CharacterEncoding: This field conveys the character encoding scheme for all textual data used within the TVA
metadata fragment stream. Table 2 defines the set of possible values for this field.

Table 2: Character encoding and their termination values

Value Description Termination Value
0x00 7 bit ASCII (ISO/IEC 10646 [1]) 0x00
0x01 UTF-8 0x00
0x02 UTF-16 0x0000
0x03 GB2312 0x00
0x04 EUC-KS 0x0000
0x05 EUC-JP 0x0000
0x06 Shift_JIS 0x0000
0x07 - 0xE0 TVA reserved Undefined
0xE1 - 0xFF User defined Undefined

BufferSize: This element conveys the maximum number of bytes a Zlib buffer will decompress to.

IndexingVersion: This element indicates the method used to represent TVA indices. It provides the possible set of
values for this element.

Table 3: Table of values for the IndexingVersion field

Value Indexing Version
0×00 reserved
0×01 TVA Index Version 1
0×02 - 0xEF TVA reserved
0×F0 - 0xFF User defined

Reserved: Variable data space for inserting future initialization parameters. In this version, the length of this field shall
be 0×00.

DecoderInit: This element conveys the DecoderInit. The format of the DecoderInit is dependant on the
encoding method used. In the case of BiM (EncodingVersion = 0×01) it shall be as defined in clause 4.4.2.1.

4.4.2 MPEG-7 system profile

Due to the characteristics of a uni-directional environment, a number of restrictions have been imposed on how the
MPEG-7 BiM profile shall be used. The present clause details these restrictions.

4.4.2.1 DecoderInit

The DecoderInit is used to configure parameters required for the decoding of the binary fragments. There is only
one DecoderInit associated with one TVAmetadata fragment stream. The DecoderInit shall take the form as
specified in ISO/IEC 15938-1 [4] with the following caveats.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 36

4.4.2.1.1 UnitSizeCode

ISO Semantics: This is a coded representation of UnitSize. UnitSize is used for the decoding of the binary
fragment update payload.

Restriction: This UnitSizeCode variable shall be set to the default value: "000".

4.4.2.1.2 InitialDescription

ISO Semantics: This conveys portions of a description using the same syntax and semantics as an MPEG7 access unit.
The InitialDescription provides an initial state for the binary description tree.

Restriction: The TVA fragment containing the TVAMain element and is the entry point of the TVA metadata fragment
stream. The InitialDescription may be carried in two ways:

• Along with the DecoderInit.

• Independently from the DecoderInit.

In the case where the InitialDescription is sent independently from the DecoderInit, it must be received
and decoded by the receiving terminal before processing of any other TVA fragments. The delivery layer shall provide
signalling to indicate where the InitialDescription is to be found.

4.4.2.2 FragmentUpdateCommand

ISO Semantics: The FragmentUpdateCommand code word specifies the command that shall be executed on the
binary format description tree. It should be ignored when the PositionCodeFlag in the TVA-Init is set to "0".

TVA Semantics:

In the TVA framework, the semantics of the FragmentUpdateCommand is refined such as:

• When a fragment is modified (i.e. updated or enriched), the replace command (ReplaceContent) is used.

• When a fragment is no longer valid (the programme has been dropped), the delete command
(DeleteContent) is used.

• When a fragment is obsolete, the fragment is no longer transmitted.

4.4.2.2.1 Guidelines for the use of the FragmentUpdateUnit

The FragmentUpdateUnit uses the ContextPath along with a Position Code to determine where the TVA
fragment being updated should be placed relative to its parent element. The ContextPath provides the absolute path
from the metadata description root (TVAMain) to the element, of which this fragment is a child. In a classical BiM
implementation the Position Code is used to indicate the position of the TVA fragment among its sibling fragments, so
as to maintain the original document order of sibling elements. In a TVA implementation of BiM it is not a requirement
to maintain the original metadata description sibling ordering. It is not a requirement to support the use of the Position
Code within a TVA implementation. However if it is used, the Position Code provides a handle to a previously
transmitted TVA fragment.

4.4.2.2.1.1 Position Code allocation

As described above, the Position Code provides a handle to a transmitted TVA fragment. This Position Code must be
unique for all children of a given parent element. Due to the nature of a TVA metadata fragment stream i.e. a living
description, constantly changing - over time the Position Code value will become very large. Therefore it would be
advantageous to reuse previously allocated values that are no longer valid. However the following should be taken into
account:

• A sufficient period of time should have elapsed since the use of a specific Position Code value to ensure that
receiving terminals have automatically deleted from the cache the fragment previously assigned this Position
Code.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 37

4.4.2.2.1.2 Fragment Add/Update

When a new or updated fragment is transmitted the FragmentUpdateUnit will have the following settings:

• FragmentUpdateCommand - Set to "0010" (ReplaceContent).

• FragmentUpdateContext.

• ContextModeCode - Set to "001" (Absolute path to fragments parent element, with no multiple payload
support).

• ContextPath Position Code - A value that identifies the fragment within a TVA metadata description and shall
be unique if used.

When the receiving terminal acquires the FragmentUpdateUnit it will use the ContextPath along with the
Position Code to see if there is a TVA fragment already cached with the same Position Code. If a previous TVA
fragment is found the previous TVA fragment shall be deleted and replaced with the new TVA fragment. If a previous
TVA fragment is not found the TVA fragment is just cached along with the rest.

4.4.2.2.1.3 Fragment Delete

When a fragment is no longer valid a Delete command can be sent to the receiving terminal, to inform the device that
the fragment shall no longer be used. A Delete command will have the following settings:

• FragmentUpdateCommand - Set to "0011" (DeleteContent).

• FragmentUpdateContext.

• ContextModeCode - Set to "001" (Absolute path to fragments parent element, with no multiple payload
support).

• ContextPath Position Code - The original unique value assigned to this TVA metadata description fragment.

When the receiving terminal acquires the FragmentUpdateUnit it will use the ContextPath along with the
Position Code to see if the TVA fragment is within its cache. If the TVA fragment is found it shall no longer be used
and removed from the terminal's cache.

It is assumed that the delete command will only be transmitted for a relatively short period of time, to enable currently
listening terminals to keep their cache updated.

However due to the nature in which TVA fragments are acquired within a unidirectional environment, the Delete
command should not be relied upon to remove elements from the terminals cache. The terminal should implement a
timeout mechanism, where if a given fragment is not seen in the data stream for a specified period of time, the terminal
shall assume that the fragment is no longer valid and remove it from its cache.

4.4.2.2.1.4 Example decoder behaviour

A TVA metadata fragment stream generator has an internal representation of the decoder memory. This representation
can be modelled by a buffer, which contains an infinite number of slots.

A TV-Anytime decoder contains several tables (ProgramInformationTable, etc.). These tables correspond to the
fragmentation specification of a TVA metadata description.

If you consider the following scenario describing the management of the programInformation description, a
fragment unit is composed of:

• a command (ReplaceContent, DeleteContent);

• a path, which gives, element and type information (provides the type of the payload);

• a Position Code (gives the position of the element (child number) encoded in the payload);

• a payload (the encoded TVA fragment).

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 38

At time t,

Stream content (each fragment unit being carouseled) Decoder memory
fragment unit:

(ReplaceContent, a ProgramInformation / position 2, Payload122)

fragment unit:

(ReplaceContent, a ProgramInformation / position 6, Payload12)

fragment unit:

(ReplaceContent, a ProgramInformation / position 9, Payload56)

Empty

Payload122

Empty

Empty

Empty

Payload12

Empty

Empty

Payload56

Empty

Empty

1

2

3

4

5

6

7

8

9

10

11

...

At time t'

Stream content (each fragment unit being carouseled) Decoder memory
fragment unit:

(ReplaceContent, a ProgramInformation / position 2, Payload122)

fragment unit:

(DeleteContent, a ProgramInformation / position 6)

fragment unit:

(ReplaceContent, a ProgramInformation / position 8, Payload6)

Empty

Payload122

Empty

Empty

Empty

Payload12 false

Empty

Payload6

Empty

Empty

Empty

1

2

3

4

5

6

7

8

9

10

11

...

Therefore, a TVA decoder can notify an application that payload 12 is not longer valid. If the application relies on
payload 12, it will be notified about the deletion. But if the TVA decoder has not received the first fragment unit, which
sets the value of the payload 12 at position 6, the TVA decoder ignores this "delete" fragment.

In addition payload 56 (position 9) is now obsolete and is no longer transmitted.

Therefore, a TVA metadata fragment stream generator manages the TVA metadata fragment stream in order to send
these notifications to the decoder.

4.4.2.3 ContextMode

ISO Semantics: The ContextMode specifies the addressing mode for the context path.

Restriction: The ContextMode code is limited to the value "001" (Navigate in "Absolute addressing mode" from the
selector node to the node specified by the ContextPath).

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 39

4.4.2.4 TV-Anytime codec

4.4.2.4.1 Classification scheme wrapper

In the MPEG-7 framework, the use of a specific codec for a specific type is signalled using the codec configuration
mechanism defined in ISO/IEC 15938-1 [4]. This mechanism associates a codec using its URI with a list of schema
types. For that purpose, a URI is assigned to each codec in a classificationScheme, which defines the list of the
specific codecs.

In the present document, this list is composed of 3 specific codecs: Zlib, dateTime and date. The following figure
gives the standard classificationScheme as used by the TVA MPEG-7 profile.

<ClassificationScheme uri=" urn:tva:metadata:cs:CodecTypeCS:2004">
 <Term termID="1">
 <Name xml:lang="en">ZlibCodec</Name>
 <Definition xml:lang="en">Encodes using Zlib</Definition>
 </Term>
 <Term termID="2">
 <Name xml:lang="en">tvadateTimeCodec</Name>
 <Definition xml:lang="en">Encodes date using Modified Julian
 Date & Time in Millisecond</Definition>
 </Term>
 <Term termID="3">
 <Name xml:lang="en">tvadateCodec</Name>
 <Definition xml:lang="en">Encodes date using Modified Julian
 Date</Definition>
 </Term>
</ClassificationScheme>

4.4.2.4.2 dateTime Codec

The XML Schema primitive simple type dateTime is used widely within the TVA metadata Schema and so a specific
codec has been designed for representing date time fields.

Times shall be based on GMT, with no provision provided for maintaining the local time offset information. Any
requirement to localize time values shall be performed by the receiving terminal.

The following describes how the XML Schema primitive dateTime shall be encoded.

4.4.2.4.2.1 Encoding

The dateTime primitive is represented as an 8-byte unsigned integer number (Big-Endian), Days are represented using
the first 4 bytes using Modified Julian Date. Time is represented using the last 4 bytes expressed as the number of
elapsed milliseconds since 00:00:00 hours.

The origin for the Modified Julian Date shall be Midnight on 17th November 1858.

Example dates:

Date Modified Julian Date
1st April 1980 44 330

30th January 2000 51 573

1st March 2001 51 969

Example dateTimes:

dateTime value Encoded value
1980-04-01T02:00:00Z 0×0000AD2A006DDD00
2000-01-30T12:10:01Z 0×0000C975029C59A8
2001-03-01T00:00:00Z 0×0000CB0100000000

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 40

4.4.2.4.3 date codec

The XML Schema primitive simple type date describes a date within the Gregorian calendar. The date takes the form of
a string as defined by ISO/IEC 8601 [21].

4.4.2.4.3.1 Encoding

The XML Schema date primitive shall be represented as a 4-byte unsigned integer (Big-Endian). It shall contain the
number of days using the Modified Julian Date format, as described in clause 4.4.2.4.2.1.

4.4.2.4.4 Zlib optimized decoder

In the TVA MPEG-7 profile, the following Zlib codec is used by default for the encoding of strings instead of the
UTF-8 representation. This Zlib codec is reinitialized for each TVA fragment.

4.4.2.4.4.1 Rationale

Classical lossless statistical compression algorithms (like Zip or GZip) are used in the present document to improve
character strings compression. The present document uses the Zlib library [6].

In most cases, when strings are short (fewer than 100 characters), the performance of Zlib is poor. Indeed, this statistical
compression algorithm requires a larger look ahead buffer to start eliminating redundancy. To achieve a good
compression ratio, the proposed "Zlib optimized decoder" gathers different strings into one buffer before compressing
it. The size of this buffer, noted buffer_size, allows the encoder to balance the compression ratio and the memory
needed at the decoder. The codec has to manage an input buffer of strings as described in the following clauses. The
default value of the buffer size is set to 1 000 bytes and can be overridden in the TVA-init Message.

4.4.2.4.4.2 Encoding

At the encoding phase, the buffer is fed with strings. When the buffer is full, it is compressed and the resulting
compressed chunk of data is placed in the expected position of the first string compressed using this buffer. Figure 28
represents a BiM binary stream without the "Zlib optimized decoder". Strings (in grey) are dispersed along the entire
bitstream.

String

. . .

Figure 28: BiM bitstream without Zlib optimized decoder

Figure 29 represents only the strings to be compressed and shows how they are gathered and compressed together to
create a more compact bitstream and where the resulting compressed chunks are dispersed. The location of the
compressed chunk ensures that during the decoding process when a string is required either the Zlib codec gets a
compressed chunk, decompress it and delivers the string from the decompressed buffer or if its decompressed buffer is
not empty, it delivers the string from its decompressed buffer.

compressedCompressed compressed

Strings

Figure 29: BiM stream with Zlib optimized decoder

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 41

The decoding process is formally explained in clause 4.4.2.4.4.3.

4.4.2.4.4.3 Decoding

At the decoding level, the compressed chunk of strings is decompressed into a buffer (still limited by the buffer_size
used at the encoder side). This buffer delivers the strings to the leaves (using the separator character). In the case where
a value is encoded over two or more chunks, the value shall be the concatenation of all characters extracted from the
buffers until the separator character.

4.4.2.4.4.4 Behaviour

Syntax No. of Bits Mnemonic
ZlibDecoder() {

ResultString=""
TempChar = GiveNextCharInBuffer();
While (TempChar != separatorChar) {

ResultString = concat(ResultString, Tempchar)
Tempchar = GiveNextCharInBuffer()

}
return ResultString

}

Syntax No. of Bits Mnemonic
GiveNextCharInBuffer() {

If isEmpty (charsBuffer) {
ZlibStringLength 8+ vluimsbf8
ZlibString 8* ZlibStringLength bslbf
CharsBuffer = ZlibDecompress(ZlibString)

}
return nextChar(charsBuffer)

}

4.4.2.4.4.5 Semantics

In order to obtain the next string, the decoder reads the charsBuffer until it gets a separatorChar. If the
charsBuffer is totally consumed before reaching a separatorChar, the charsBuffer is refilled by
decompressing the next chunk available in the bitstream.

ResultString: A local variable representing the string expected.

TempChar: A local variable representing the character read in the charsBuffer.

separatorChar: A constant representing the separatorChar as defined by the termination_value of the related
character encoding format specified in TVA-Init.

ZlibStringLength: Indicates the size in bytes of the compressed ZlibString. A value of zero is forbidden.

ZlibString: A representation of a compressed sequence of characters. The compression algorithm used is Zlib [6].

ZlibDecompress(aString): This decompresses a string and returns the decompressed string.

NextChar(charsBuffer): This function returns the first character of the charsBuffer and removes it from the
charsBuffer.

isEmpty (charsBuffer): This function returns true if the charsBuffer is empty, otherwise false.

Concat(aString, aCharacter): This function returns the concatenation of a String and a Character.

CharsBuffer: A buffer of characters. It contains a list of string separated by a separatorChar.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 42

4.5 Carriage of TV-Anytime data
TV-Anytime does not define the way in which the metadata should be carried within a specific delivery system.
However TV-Anytime has defined a generic mechanism called a "Container" for grouping a number of related data
structures together for transmission.

The following clauses describe the format of these containers and additional requirements on the delivery layer, to
enable the identification of containers, the type of data a container carries and the current version of a container.

4.5.1 Containers

A container forms the top-level storage unit in which all TVA data within a unidirectional environment is transmitted. A
container contains one or more related structures, which can be used to convey both data fragments and indexing
information.

4.5.1.1 Carriage of containers

TV-Anytime does not define the way in which these containers should be carried, as this is specific to the delivery
system. However consideration has been given, to enable the container to be easily mapped on to standard delivery
methods. For example in an MPEG-2 environment, the containers may be conveyed using sections, objects within a
DSM-CC U-U Object Carousel or modules within a DSM-CC Data Carousel.

4.5.1.2 Classification of containers

Containers are classified depending on what type of information they carry. The type of container shall be signalled
with the delivery layer to enable a receiver to efficiently acquire containers carrying a specific type of data. This for
example would enable a receiver to just acquire data containers, which it could use to populate a terminals local
Database cache.

Containers are classified as follows:

• Data Containers - Containers carrying TVA metadata fragments and hold the following structures -
encapsulation, data_repository (Binary data).

• Index Containers - Containers carrying Indexing information and holding the following structures -
index_list, index, multi_field_sub_index, data_repository, fragment_locators
(optional).

It should be noted that it is possible for a single container to carry both types of data.

The use of data containers as specified in the present document for the carriage of TVA fragments is mandatory.

4.5.1.3 Container identification

To be able to identify a container, a container must be given a unique identifier (container ID). This shall take the form
of a 16 bit value and shall be conveyed at the transport delivery layer. No provision is made to insert this identifier at
the container level, since it should not be necessary to acquire the container to find out its container ID. The signalling
of the container ID is out of scope for TVA and shall be stipulated by other appropriate standards bodies e.g. DVB,
ATSC and ARIB.

4.5.2 Container versioning

Each container must have an associated version identifier. No provision is made within the container for this, as it
should not be a requirement to load the container to see if the version has changed. Therefore version identification
must be carried at the transport delivery layer. The definition of this version identifier is out of scope for TVA and shall
be stipulated by other appropriate standards bodies e.g. DVB, ATSC and ARIB.

The container version is not used or referenced anywhere within a container or structure and so may take any form
appropriate for the delivery mechanism.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 43

4.5.2.1 Container syntax

Syntax No. of Bits Mnemonic
container () {
 container_header {
 num_structures 8 uimsbf
 for (j=0; j<num_structures; j++) {
 structure_type 8 uimsbf
 structure_id 8 uimsbf
 structure_ptr 24 uimsbf
 structure_length 24 uimsbf
 }
 }
 for (j=0; j<byte_count; j++) {
 structure_body
 }
}

num_structures: An 8 bit field specifying the number of structures contained within this container. A value of 0×00 is
invalid.

structure_type: An 8 bit field identifying the type of structure being referenced, according to table 4.

Table 4: Structure_type assignments

Value Description
0×00 Reserved
0×01 Encapsulation (see clause 4.6.1.1)
0×02 Data Repository (see clause 4.6.1.4)
0×03 Index List (see clause 4.8.5.3)
0×04 Index (see clause 4.8.5.4)
0×05 Multi Field Sub Index (see clause 4.8.5.5)
0×06 Fragment Locators (see clause 4.8.5.6)
0×07 moved_fragments (see clause 4.6.1.2)
0×08 - 0×DF TVA Reserved
0×E0 - 0×FF User defined

structure_id: An 8 bit value which is used to distinguish between multiple occurrences of a specific
structure_type. In some cases this is just an instance identifier (e.g. index and multi_field_sub_index
structures) and in other cases it is used to distinguish the type of data carried within the structure (e.g. data repository).

In cases where the structure_id is not used the field shall be set to 0xff.

Table 5: Structure_type and their matching valid structure_id

Structure_type structure_id Description
0×00 0×00 - 0×FF Reserved
0×01 0×00 - 0×FF Reserved
0×02 0×00 Data Repository of type strings, see clause 4.8.4.1
0×02 0×01 Data repository of type binary data, see clause 4.6.1.4.1
0×02 0×02 - 0×FF Reserved
0×03 0×00 - 0×FF Reserved
0×04 0×00 - 0×FE Used to identify a specify instance of an index structure, within a

container
0×05 0×00 - 0×FE Used to identify a specific instance of a multi_field_sub_index

structure within a container
0×06 0×00 - 0×FE Used to identify a specific instance of a fragment_locator structure
0×07 - 0×FF 0×00 - 0×FF Reserved

structure_ptr: A 24 bit field giving the offset in bytes from the start of this container to the first byte of the identified
structure.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 44

structure_length: A 24 bit field which indicates the length in bytes of the structure pointed to by structure_ptr.

Entries within the container_header shall be ordered in ascending structure_type and structure_id.
For example all structures of type data_repository shall be grouped together and items within the group ordered
in ascending structure_ id. This enables a device to efficiently locate a particular structure of interest.

structure_body: Data forming one or more structures within this container.

4.5.2.2 Container map

As has been mentioned above, containers do not include information such as, container Id, version or container
category. This information must be carried at the delivery layer, informing a device when containers have changed and
what the appropriate download parameters are. This higher-level messaging is termed a container map.

The concept of a container map can be found in a number of Broadcast delivery mechanisms, for instance the DSM-CC
Data Carousel DII. In these instances the standard mechanisms should be used, provided they support the following set
of requirements.

4.5.2.2.1 Container map requirements

A specific container map implementation shall meet the following requirements:

• Signal the Id of each container - Containers are identified using their container_id. This shall be a unique
number within the scope of a TVA metadata fragment stream. It is required that the id of a container is
signalled at the Container map level, to enable the acquisition of a container with a given container_id.

• Identify the version of each container - The current version of each container shall be signalled and this shall
increment whenever the contents of a container change. It shall be possible to monitor at a single point for
version changes to a container. Ideally it should be possible to monitor just data containers, or just containers
forming a single index.

• Identify the type of container i.e. Index Container, Data Container - This defines the type of data carried with a
container and can be used by a receiving device to filter for example containers carrying TVA fragments.

• The ability to download all document containers (preferably in a parallel manner).

• Enable the ability to carry multiple TVA metadata fragment streams on the same delivery channel.

4.6 Fragment encapsulation
As described above a TVA-Anytime metadata description is split into a number of fragments, where a fragment forms a
self-consistent unit of data. To enable a receiver to efficiently identify a change to a TVA fragment an encapsulation
format has been defined. This provides TVA fragment Version information and an identifier specific to a TVA
fragment. This enables a receiver to quickly identify fragments that have changed in relation to that cached on the
receiving terminal.

4.6.1 Encapsulation format

The encapsulation data is provided by the encapsulation structure defined in figure 30. This structure is then transmitted
along with the fragments using a "container" as described in clause 4.5.1.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 45

Data Container

Container Header

Encapsulation
structure

Data Repository
(BiM fragments)

Figure 30: Schematic representation of interrelationship between
structures within a container

4.6.1.1 Encapsulation structure

The Encapsulation structure provides the encapsulation mechanism for a set of TVA fragments, by providing the ability
to assign a unique identifier (fragment_id) for the lifetime of a TVA fragment and indicating the current version of
a TVA fragment.

Each entry references a single TVA fragment carried within a binary_data_repository structure carried within
the same container.

There shall only ever be one encapsulation structure within a single container.

Syntax No. of Bits Mnemonic
encapsulation_structure () {
 encapsulation_header {
 reserved_other_use 2 bslbf
 reserved 6 bslbf
 fragment_reference_format 8 uimsbf
 }
 for(j=0; j<fragment_count; j++) {
 encapsulation_entry {
 fragment_reference()
 fragment_version 8 uimsbf
 fragment_id 24 uimsbf
 }
 }
}

reserved_other_use: This field shall be set to "11".

fragment_reference_format: This 8 bit value defines the format and interpretation of the fragment_reference
field.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 46

Table 6: Valid fragment_reference_formats

Value Meaning
0×00 Reference to a BiM encoded fragment (see clause 4.6.1.3.1)
0×01 - 0×E0 TVA Reserved
0×E1 - 0×FF User defined

fragment_reference: A reference to a fragment, the interpretation of this field is dependent on the
fragment_reference_format. Please refer to table 6 to determine how this field should be interpreted.

fragment_version: An 8 bit value which identifies the version of the fragment referenced by this entry. When the data
for the fragment identified by the fragment_id changes, the fragment_version shall increment modulo 255.

fragment_id: A 24 bit value which uniquely identifies a metadata fragment within the TVA metadata fragment stream.
The value assigned to a fragment shall be persistent for the life of that fragment so long as it is transmitted in the TVA
metadata fragment stream. All entries within the encapsulation_structure shall be ordered by ascending
fragment_id. This enables the efficient location of a fragment by using a binary search algorithm.

4.6.1.2 Moved fragments structure

The moved_fragments structure is used to signal when a fragment has moved from one container to another. This is
achieved by making an entry within the moved fragments structure carried within the fragments last container.

There shall be a maximum of one moved_fragment structure within a single container.

Syntax No. of Bits Mnemonic
moved_fragments () {
 for(i=0; i<num_of;i++){
 fragment_id 24 uimsbf
 new_container_id 16 uimsbf
 }
}

fragment_id: The id of the fragment which has moved containers. All entries within the
moved_fragment_structure shall be ordered by ascending fragment_id.

new_container_id: The id of the container, to where the fragment has moved.

4.6.1.3 Fragment_Reference formats

There are a number of defined fragment locator formats to enable the referencing of fragments from within an
encapsulation structure.

4.6.1.3.1 Referencing a BiM encoded fragment

Syntax No. of Bits Mnemonic
BiM_fragment_reference () {
 BiM_fragment_ptr 16 uimsbf
}

BiM_fragment_ptr: Offset in bytes from the start of the Binary repository within the container where the first byte of
the FragmentUpdateUnit() for the BiM encoded fragment can be found.

4.6.1.4 Data repository

The Data Repository forms the base structure, used to hold string data and binary data. All references to the data
repository are local i.e. from within the container. The type of data, which the data repository carries, is indicated by the
structures associated structure_id in the container_header.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 47

There may be more than one Data Repository within a container. However there shall only ever be a maximum of one
data repository of a given type.

Syntax No. of Bits Mnemonic
data_repository () {
 if (structure_id == 0×00) {
 string_repository()
 }
 else if (structure_id == 0×01) {
 binary_repository()
 }
 else {
 user_defined_data_structure()
 }
}

structure_id: An 8 bit value used to specify the type of data carried within this data repository. The structure_id
is not defined within this structure, but forms part of the structure instantiation in the container header
(see clause 4.5.2.1).

4.6.1.4.1 Binary data repository

The encoding of data in the binary repository is defined at the point of reference. Each item of data must either have a
length explicitly encoded within it, or a length implicitly understood by the decoder (i.e. fixed length). No provision is
made to define the data length within the binary data repository structure.

All entries shall be byte aligned.

There shall only ever be one binary data repository within a single container.

Syntax No. of Bits Mnemonic
binary_repository() {
 for (i=0; i<value_count; i++) {
 for (j=0; j< length; j++) {
 value_byte 8 bslbf
 }
 }
}

value_byte: A byte of binary value data.

4.6.1.4.1.1 Carriage of BiM encoded fragments

Where the binary_data_repository contains BiM encoded data, a single binary data repository shall hold a
single complete BiM Access Unit.

Syntax No. of Bits Mnemonic
binary_repository() {
 BiMAccessUnit {
 NumberOfFUU 8+ vluimsbf8
 for(i=0; i< NumberOfFUU; i++) {
 FragmentUpdateUnit()
 }
 }
}

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 48

4.6.1.5 Alternative Encoding formats

Where BiM is not used for the encoding of fragments, the encoding solution:

• Shall provide a mechanism for indicating the type of TVA fragment.

• Optionally provide a mechanism for indicating the action to be performed e.g. Update fragment, Delete
fragment, etc.

4.7 Fragment Management
In the previous clause a number of structures have been specified to enable the encapsulation of TVA fragments, within
a TVA metadata fragment stream. These TVA fragments are dynamic and may change during their lifetime. In addition
new TVA fragments will be added and old TVA fragments removed. The following describes how the defined
encapsulation structures shall be used to enable the addition, deletion and updating of TVA fragments.

4.7.1 Fragment Id

The fragment_id is a 24 bit value which uniquely identifies a TVA fragment within a single TVA metadata
fragment stream. This can be used by an application to track a TVA fragment during its lifetime within a TVA metadata
fragment stream. It is valid to re-use a fragment_id value, provided that sufficient time has elapsed since the
fragment_id value was last used.

4.7.2 Fragment Add

The addition of a new TVA fragment is straightforwardly achieved by creating an entry within the encapsulation
structure having a unique fragment_id and an appropriate fragment_version and inserting the fragment into
the binary data repository. The addition of a new entry into an existing container will cause the container's version
number to increment.

4.7.3 Fragment Update

An update to a previously transmitted TVA fragment will cause the TVA fragment within the binary data repository to
be updated. In addition the version number of the TVA fragment shall be incremented. These changes will cause the
version number of the container in which the fragment is carried to increment.

4.7.4 Fragment Move

In some situations it may be required to move fragments between containers in which they are transmitted. It is
recommended for efficiency and ease of management of fragments that this is kept to a minimum. However when
required to move fragments between containers, the following should occur: The fragment is inserted into the new
container, along with its original fragment_id and current fragment_version. An entry is inserted into the
moved_fragments structure of the fragments previous container to indicate in which container the fragment can
now be found. These operations will cause both the previous and the current container to have their version number
incremented.

4.7.5 Fragment Delete

The deletion of a fragment can mean one of two things:

• The originally transmitted fragment is valid, but has been removed from the metadata fragment stream, as the
content it describes is no longer available. For example the transmission time has passed.

• The originally transmitted fragment was invalid and so should not be used and discarded.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 49

Both of these scenarios are supported as follows: when a fragment disappears from the metadata fragment stream it
shall be treated as if the fragment has been deleted. Care should be taken when determining if a fragment is no longer in
the TVA metadata fragment stream. If a fragment's fragment_id is not found in the expected containers
encapsulation structure, the moved_fragments structure should be searched for an entry indicating that the fragment
has moved containers. However if the metadata fragment stream is not constantly monitored for changes this
mechanism should not be relied upon, as a fragment may have moved containers, but the corresponding fragment
moved entry is no longer transmitted. The deletion of a fragment will cause the corresponding containers version
number to be incremented.

In addition to the above methods, if BiM is used for fragment encoding and the PositionCodeFlag within the
TVAInit is set to "1", the BiM FragmentUpdateCommand, which forms part of the FragmentUpdateUnit
shall be used to signal the deletion of a fragment. In this case when a fragment is deleted the referenced BiM fragment
will consist of a FragmentUpdateUnit with a DeleteContent command and no
FragmentUpdatePayload. The change of fragment will cause the fragment_version within the
encapsulation structure to be incremented.

This BiM Delete fragment command (see clause 4.4.2.2.1.3) if used shall be transmitted for a limited period of time,
after which it should be removed. Receiver implementers should be aware that this mechanism should not be relied
upon, as the receiver may be switched off or tuned away from the TVA metadata fragment stream, during the
transmission of the Delete Command.

4.8 Indexing

4.8.1 Introduction

Data originally encapsulated in an XML document is not always best accessed as if it were an XML document when in
the broadcast environment. In this environment, navigation of the document tree is relatively slow even when the
location of the data in the tree is known. If the location is not known then the receiver must search through a set of data
looking for a node with a particular value. In most cases this will be too slow to be practical. Indexing seeks to avoid
these problems by avoiding the need to navigate the document tree. Indices provide direct access to a document TVA
fragment by listing the values of a particular node (the index's key fields) and describing where the matching
fragment(s) can be found in the carousel. Multiple indices can point to the same fragment, each using a different node
as a key field.

4.8.2 Requirements

The indexing system shall be designed for metadata available in a unidirectional environment and whose TVA metadata
fragments are carouseled.

The indexing system shall be compatible with any specific carousel format used to carry the TVA fragments.

The indexing system shall be designed in such a way that the data it uses may be broadcast cyclically but without being
tied to a particular carousel mechanism.

The indexing system should be considered as a way to improve the navigability within the data set formed by the TVA
fragments constituting a specific TVA metadata description, however this new system shall:

• be defined and used in addition and with regard to the existing solutions already standardized by TV-Anytime;

• be optional in the sense that for some metadata description or some application such an improved navigability
may not be necessary or helpful.

The indexing system shall allow the indexing data to be used "on-line" when searching for a specific TVA fragment,
namely without needing to be necessarily cached or completely acquired.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 50

The indexing mechanism shall be defined as a way to retrieve using a certain index key a specific TVA fragment among
all the TVA fragments constituting a metadata description and carouseled over a unidirectional stream:

• The nature of the key index may differ from one type of TVA fragment to another.

• For each of these possible standard index data type, TV-Anytime will specify what the encoded format and the
sorting order are.

• The value of the key used to index a TVA fragment shall always be available directly or via an indirection in
this TVA fragment.

The indexing mechanism should be extensible to support the possible definition of private new indexes through the use
of hooks.

4.8.3 Carriage of Indexing Information

Indexing data is carried using the generic Container format specified in clause 4.4.2. The present clause makes use of
some structures already define in clause 4.6 on fragment encapsulation.

Container Header

Index List

Multi Field Sub
Index

Index

Data Repository

Index Container Data Container

Container Header

Encapsulation

Data Repository
(BiM fragments)

Figure 31: Schematic representation of interrelationship between
Index containers and Data containers

4.8.4 Data repository

The data repository within the context of an Index is used to carry data used in the representing of an index e.g. key
field values. The syntax of a data repository is defined in clause 4.6.1.4 along with how binary data is carried within a
data repository. In addition to binary data the data repository is used to carry Strings, as described below.

4.8.4.1 String repository

The string repository is used to hold all strings used by structures within the same container.

There shall only ever be one string repository per container. References to this repository are always local (that is, from
the same container). Support is provided for identifying the string encoding system, to enable the use of non ASCII
based character sets. The use of length fields or termination values are dependent on the string encoding used.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 51

Syntax No. of Bits Mnemonic
string_repository() {
 encoding_type 8 uimsbf
 for (i=0; i<strings_count; i++) {
 for (j=0; j<string(i).length; j++) {
 string_character 8+
 }
 string_terminator 8+ bslbf
 }
}

encoding_type: An 8 bit field used to define the character encoding system, according to table 2.

string_character: Character of the encoded string. The number of bytes required to represent the character will be
dependent on the string encoding system used.

string_terminator: One or more bytes which indicate the end of a string. The actual value will be dependent on the
string encoding system used.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 52

4.8.5 Index structures

Index

Index L ist

Index Index

S
ub Index

S
ub Index

S
ub Index

S
ub Index

S
ub Index

S
ub Index

S
ub Index

S
ub Index

ContainerContainer

Conta iner

Container

Container

Fragm ent Data

Access
Unit

A ccess
Unit

Access
Unit

A ccess
Unit

Access
Unit

S tructures

Data Container

Index Conta iner

Figure 32: Indexing structure

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 53

4.8.5.1 Identification of indices

Indexes are keyed on schema simple types such as dateTime, CRID. Multiple indices can reference a single TVA
fragment. It is important to be able to describe what an index is keyed on.

There are two important facts that the receiver needs to know about an index:

• The first fact is where in the schema hierarchy are the document fragments that it is referencing? It is
important to know this because this describes the type and context of the fragment.

• The second fact is to know "by which key fields are these fragments indexed?" The key fields are typically
child members (e.g. an attribute or an element) of the fragment type being indexed.

The specification provides two mechanisms:

• Id based identification.

• XPath expressions.

4.8.5.1.1 Use of Ids

Ids can be used to identify both the type of TVA fragment and the element/attribute within the fragment, which the
index is keyed on. The set of normative TVA fragments have been mapped to aid interoperability and a mechanism
provided to enable metadata providers to define additional Ids to enable the support of enhanced metadata services.

4.8.5.1.2 Use of XPath

W3C has defined a standard specifically for the referencing of elements and attributes within an XML document, which
is called XPath. XPath is a syntax, which can describe a path to one or more nodes in a document.

The fragment XPath is an absolute path (i.e. it is relative to the root of the document), whilst the key XPath is relative to
the fragment XPath. In other words, the context node of the key XPath is the node referred to by the fragment XPath.
Combined together they describe the absolute path to the node that forms a key field. The XPath syntax can describe the
location of any type of node including elements, attributes and text nodes, enabling any of these to be a key field.

The XPath syntax is rich and many parts are not necessary to describe an index. Therefore a restricted set of syntax,
which a TVA compliant box should support has been specified:

• Absolute Location Paths only (key_xpath is relative, but the combined path is absolute).

• Axes types "attribute" and "child" only are supported.

• Abbreviated Syntax only. The preceding restrictions mean that only the following two abbreviations are
permitted:

- "child::" is always omitted;

- "@" is always used to represent "attribute::".

• "*" is not allowed.

• Only the following two Node tests are allowed:

- NameTest (in which "*" is not allowed);

- text().

• Predicates and Functions are not allowed.

• The union operator "|", is not allowed.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 54

All XPath expressions will be evaluated within the following context:

• The context node is the root of an XML document containing a TVAMain element.

• The context position and context size are both 1.

• There are no variable bindings.

• There is no function library.

In addition all elements/attributes shall be namespace qualified.

4.8.5.1.2.1 Example: Indexing by CRID and title

Considering a broadcast carousel that delivers fragments of type ProgramInformation the fragment XPath (in
short form) would be:

/tva:TVAMain/tva:ProgramDescription/tva:ProgramInformationTable/tva:ProgramInformation

The most likely key to use for searching this set of data is the CRID. The field_xpath is relative to the fragment
XPath i.e.:

@tva:programId

A broadcaster may wish to index by title, as well as by CRID, to enable the receiver to search by title. The fragment
XPath is:

/tva:TVAMain/tva:ProgramDescription/tva:ProgramInformationTable/tva:ProgramInformation

and the field_xpath is:

tva:BasicDescription/tva:Title.text()

4.8.5.2 Introduction to the multi-key index

Some applications in the receiver may request matching fragments for more than one query condition. In this case,
using multiple key fields is quite efficient to answer such requests. The multi-key consists of more than one key fields.

Multi-key values are ranked in order as follows. For a multi-key of n key fields (k1, k2, ..., kn), priority of each key field

is ordered according to its position from left to right, i.e. k1 has the highest priority and kn has the lowest priority, etc.

For two multi-key values, (a1, a2, ..., an) and (b1, b2, ..., bn):

• (a1, a2, ..., an) is larger than (b1, b2, ..., bn) if and only if there exists an integer i (0 ≤ i ≤ n-1) such that for

every j(0 ≤ j ≤ i-1), aj = bj and ai > bi.

• (a1, a2, ..., an) is smaller than (b1, b2, ..., bn) if and only if there exists an integer i (0 ≤ i ≤ n-1) such that for

every j(0 ≤ j ≤ i-1), aj = bj and ai < bi.

• (a1, a2, ..., an) is equal to (b1, b2, ..., bn) if and only if for every i(1 ≤ i ≤ n), ai = bi.

A typical query example that can be efficiently handled by the multi-key index is as follows:

• Search target fragment:

/TVAMain/ProgramDescription/ProgramLocationTable/BroadcastEvent

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 55

• Search condition:

100 ≤ ServiceId ≤ 110

9:00 PM ≤ PublishedStartTime.text() ≤ 10:00 PM

In this case, the "BroadcastEvent" fragments can be indexed by a multi-key index with key fields ServiceId
and PublishedStartTime.

4.8.5.3 Index List

The index list structure provides a list of all indices that exist for the entire TVA metadata fragment stream. A receiver
uses this structure to locate an index of interest, where an index is described using the structures fragment_type and
field_identifier fields.

It should be noted that entries within the structure are not of fixed size. The Index list must be searched sequentially.
The index_descriptor_length field is provided to enable a receiver to efficiently skip over index entries, which
it is unable to parse due to unknown fragment_types, field_identifiers, or field_encoding.

There shall be a maximum of one index list structure per TVA metadata fragment stream.

Syntax No. of Bits Mnemonic
index_list() {
 for (j=0; j<num_indexes, j++) { …
 index_descriptor_length 8 uimsbf
 fragment_type 16 uimsbf
 if(fragment_type == 0xffff) {
 fragment_xpath_ptr 16 uimsbf
 }
 num_fields 8 uimsbf
 for(k=0; k<num_fields; k++) { …
 field_identifier 16 uimsbf
 if(field_identifier == 0xffff) {
 field_xpath_ptr 16 uimsbf
 }
 field_encoding 16 uimsbf
 }

index_container 16 uimsb
 index_identifier 8 uimsbf
 }
}

index_descriptor_length: An 8 bit field which defines the number of bytes proceeding this field which are used to
describe the index.

fragment_type: An id used to identify the type of TVA fragments which the index makes references to. In addition to
the identifiers defined in the table below, there may be a set of unique identifiers allocated on a per application basis.

The fragment_type values shall associate the XPath expressions (namespace qualified) using the appropriate
versions of the namespace prefixes tva, tva2, mpeg7, int.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 56

Table 7: Fragment_type assignments

Value Description
0×0000 Reserved
0×0001 ProgramInformation fragment (/tva:TVAMain/ tva:ProgramDescription/

tva:ProgramInformationTable/ tva:ProgramInformation)
0×0002 GroupInformation fragment (/tva:TVAMain/ tva:ProgramDescription/ tva:GroupInformationTable/

tva:GroupInformation)
0×0003 OnDemandProgram fragment

(/tva:TVAMain/tva:ProgramDescription/tva:ProgramLocationTable/tva:OnDemandProgram)
0×0004 BroadcastEvent fragment (/tva:TVAMain/tva:ProgramDescription/ tva:ProgramLocationTable/

tva:BroadcastEvent)
0×0005 Schedule fragment (/tva:TVAMain/ tva:ProgramDescription/ tva:ProgramLocationTable/

tva:Schedule)
0×0006 ServiceInformation fragment (/tva:TVAMain/ tva:ProgramDescription/

tva:ServiceInformationTable/ tva:ServiceInformation)
0×0007 PersonName fragment (/tva:TVAMain/ tva:ProgramDescription/ tva:CreditInformationTable/

tva:PersonName)
0×0008 OrganizationName fragment

(/tva:TVAMain/tva:ProgramDescription/tva:CreditInformationTable/tva:OrganizationName)
0×0009 ProgramReviews fragment (/tva:TVAMain/ tva:ProgramDescription/ tva:ProgramReviewTable/

tva:Review)
0×000A CSAlias fragment

(/tva:TVAMain/ tva:ClassificationSchemeTable/tva:CSAlias)
0×000B ClassificationScheme fragment

(/tva:TVAMain/tva:ClassificationSchemeTable/tva:ClassificationScheme)
0×000C Segment Information fragment (/tva:TVAMain/ tva:ProgramDescription/ tva:SegmentationTable/

tva:SegmentList/ tva:SegmentInformation)
0×000D Segment Group Information fragment (/tva:TVAMain/ tva:ProgramDescription/

tva:SegmentationTable/ tva:SegmentGroupList/ tva:SegmentGroupInformation)
0×000E TVAMain fragment (/tva:TVAMain)
0×000F OnDemandService fragment (/tva:TVAMain/tva:ProgramDescription/ tva:ProgramLocationTable/

tva:OnDemandServiceType)
0×0010 PurchaseInformation fragment

(/tva:TVAMain/tva:ProgramDescription/tva:PurchaseInformationTable/tva:PurchaseInformation)
0×0011 MetadataOriginationInformation fragment

(/tva:TVAMain/tva:MetadataOriginationInformationTable/tva:MetadataOriginationInformation)
0×0012 Package fragment (/tva:TVAMain/tva2:PackageTable/tva2:Package)
0×0013 InterstitialCampaign Fragment

(/tva:TVAMain/tva2:InterstitialCampaignTable/tva2:IntestitialCampaign)
0×0014 RMPIDescription Fragment (/tva:TVAMain/tva2:RMPITable/tva2:RMPIDescription)
0×0015 CouponDescription Fragment (/tva:TVAMain/tva2:CouponTable/tva2:CouponDescription)
0×0016 TargetingInformation Fragment

(/tva:TVAMain/tva2:TargetingInformationTable/tva2:TargetingInformation)
0×0017 Rule Fragment

(/tva:TVAMain/tva2:InterstitialTargetingTable/int:RulesTable/int:Rule)
0×0018 Request Fragment

(/tva:TVAMain/tva2:InterstitialTargetingTable/int:RecordingCacheTable/int:Request/int:Item)
0×0019 Replace Fragment

(/tva:TVAMain/tva2:InterstitialTargetingTable/int:RecordingCacheTable/int:Replace/int:Item)
0×0020 Expire Fragment

(/tva:TVAMain/tva2:InterstitialTargetingTable/int:RecordingCacheTable/int:Expire/int:Item)
0×0021 InterstitialBreak Fragment

(/tva:TVAMain/tva2:InterstitialTargetingTable/int:InterstitialTable/int:InterstitialBreak)
0x0022 PushDownloadProgram fragment

(/tva:TVAMain/tva:ProgramDescription/tva:ProgramLocationTable/tva :PushDownloadProgram)
0×0023 - 0×FFFE User defined
0×FFFF W3C XPath Expression

fragment_xpath_ptr: If the fragment_type is set to "0xffff" this provides a reference to the start of an XPath
string. This reference is in the form of an offset, in bytes, from the start of the string repository in the current container.
The value of this string is the XPath (in abbreviated XPath notation) to the root node of a TVA fragment.

num_fields: The number of fields which this index is based upon. The fields shall be defined in their order of
importance, where the first entry is the Primary field.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 57

field_identifier: An id used to identify the field on which the index is ordered. The specification allows the allocation
of unique identifiers on a per application basis.

Table 8: field_identifier Assignments

Value Description
0×0000 Reserved
0×0001 - 0×FFFE User defined
0×FFFF Indicates use of a W3C XPath style expression

field_xpath_ptr: Reference to the start of the fields XPath string (in abbreviated XPath notation) within the string
repository belonging to the current container. This reference is in the form of an offset, in bytes, from the start of the
string repository in the current container. The value of this string is an XPath expression that is relative to the
fragment_types XPath, which identified the node that is used as one of the indexes key fields.

field_encoding: Defines the encoding used to represent a key field value. This encoding determines how the
"field_value" within the multi_field_sub_index, the low_field_value and high_field_value
within the index, shall be interpreted.

The field_encoding value has two purposes:

• It determines whether the content of the field_value within the multi_field_sub_index structure,
the low_field_value and the high_field_value within the index structure, are inline or are found
within a data repository structure (see table 4).

• It defines the encoding of the data held in the field-value within the multi_field_sub_index structure,
the low_field_value and the high_field_value within the index structure (see table 9).

Table 9: Encoding and interpretation of the field_value,
low_field_value and high_field_value field

Encoding value value field interpretation
0×0000 - 0×00FF Field is a 16-bit offset in bytes from the start of the string data

repository structure.
0×0100 - 0×01FF Field contains an inline 2-byte value.
0×0200 - 0×0201
0×0300
0×0401

Field contains an inline 4-byte value.

0×0204 - 0×0206 Field contains an inline 1-byte value.
0×0202 - 0×0203 Field is a 16 bit offset in bytes from the start of the

binary_data_repository structure
0×0302
0×0400

Field contains an inline 8-byte value.

0×0204 - 0×02FF
0×0402 - 0×04FF

Undefined

0×0500 - 0×FFFF Reserved for future use.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 58

Table 10: Encoding types and their respective sizes

field_encoding Description Encoding Number of bits
0×0000 string type Null-terminated string variable (8+)
0×0001 - 0×00FF Reserved for custom

string types

0×0100 signed short two's complement - Big-Endian 16
0×0101 unsigned short unsigned binary - Big-Endian 16
0×0102 - 0×01FF Reserved for custom

2-byte types
 16

0×0200 signed long two's complement - Big-Endian 32
0×0201 unsigned long unsigned binary - Big-Endian 32
0×0202 variable length signed

integer
one bit to indicate sign (0:
positive, 1: negative), followed by
abs(value) using vluimsbf5.

variable (6+)

0×0203 variable length unsigned
integer

vluimsbf8 variable (8+)

0×0204 boolean 0:False 1:True 8
0×0205 signed byte two's complement 8
0×0206 unsigned byte unsigned binary 8
0×0207 - 0×02FF Reserved for custom

integer types

0×0300 signed float IEEE standard 754-1985 [3]
Big-Endian

32

0×0301 Reserved
0×0302 signed double IEEE standard 754-1985 [3]

Big-Endian
64

0×0303 - 0×03FF Reserved for custom
rational types

0×0400 dateTime Modified Julian Date and
Milliseconds (TVA BiM codec,
clause 4.4.2.4.2)

64

0×0401 date Modified Julian Date (TVA BiM
codec, clause 4.4.2.4.3)

32

0×0402 - 0×04FF Reserved for custom
binary fragments

0×0500 - 0×FFFF Reserved for future use

index_container: The id of the container carrying the described index.

index_identifier: This field identifies the relevant index structure within the identified container. To locate the correct
index within the container (with id = index_container) the container_header is searched for a structure
of type "index" and with a structure_id = index_identifier.

4.8.5.4 Index

The index structure is the top level of an index. It provides a list of all sub-indices and the ranges of field values that
those sub-indices carry. When considering a classic indexing system it is normal for there not to be any overlaps in the
range of field values to be found within a given set of sub indexes. This is to minimize the amount of searching required
to find a particular value.

Having overlapping sub-indices can lead to sequential searching of sub index structures, introducing an associated
decrease in performance. However in some circumstances it may be desirable to allow this. For example where the
indexed data is carried within the same container as the index and you wish to carousel the data out at different rates
and the set of data to be carouseled would not typically form a single sub index without overlaps.

In the case of overlapping sub indexes they shall be declared within the index structure in descending order of search
priority. Where the first declared sub index, which may contain the set of required field values has the highest priority.

4.8.5.4.1 Field Value Ordering

The ordering of index entries within an index is dependent on a field's primitive XML schema simple type. In the case
of strings the order may be dependent on the selected language and not necessarily in alphanumeric order.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 59

Table 11: Defined index order for primitive simple types

Simple Type Ordering
string All string shall be ordered in increasing Lexicographical order.

Lexicographical ordering is language dependent and may not be
alphanumeric.

anyURI Increasing alphanumeric order.
boolean "False" precedes "True".
NMTOKEN Increasing binary representation order.
gYear Increasing numeric value.
integer Increasing numeric value with negative values first.
date Increasing date value.
nonNegativeInteger Increasing numeric (binary) value.
positiveInteger Increasing numeric (binary) value.
dateTime Increasing dateTime (binary) value.
duration Increasing duration (binary).
float Increasing numeric value (negative values first).
double Increasing numeric value (negative values first).

Syntax No. of Bits Mnemonic
index() {
 overlapping_subindexes 1 bslbf
 single_layer_sub_index 1 bslbf
 reserved 6 bslbf
 fragment_locator_format 8 uimsbf
 for (j=0; j<num_sub_indexes, j++) { …
 for(k=0; k<num_fields; k++) { …
 if (overlapping_subindices == '1') {
 low_field_value field encoding

dependent
uimsbf

 }
high_field_value field encoding

dependent
uimsbf

 }
sub_index_container 16 uimsbf
sub_index_identifier 8 uimsbf

 }
}

Given high_field_values, (a1, a2, ..., an) and (b1, b2, ..., bn), of two arbitrary sub-indexes among the sub-indices list, The

sorting of sub-indices is determined as follows:

(a1, a2, ..., an) is larger than (b1, b2, ..., bn) if and only if there exists an integer

i (0 ≤ i ≤ n - 1) such that for every j(0 ≤ j ≤ i - 1), aj = bj and ai > bi.

(a1, a2, ..., an) is smaller than (b1, b2, ..., bn) if and only if there exists an

integer i (0 ≤ i ≤ n - 1) such that for every j(0 ≤ j ≤ i - 1), aj = bj and ai < bi.

(a1, a2, ..., an) is equal to (b1, b2, ..., bn) if and only if for every i(1 ≤ i ≤ n), ai
= bi.

Specifically, within the index() structure, if there is no overlapping between
subindices, for all j between 0 and num_sub_indexes-1 (high_field_value[j,0], …,
high_field_value[j,k]) is smaller than (high_field_value[j+1,0], …,
high_field_value[j+1,k])

"j" is the sub_index

 "k" is the field

This function high_field_value[j,k] takes its value according to the loop defined in the
index() table.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 60

overlapping_subindexes: When set to "1", indicates that one or more of the sub indices which form this index, overlap
with respect to the range of values found within the sub index. Where sub indices overlap, the sub indices are declared
in descending order of search priority. When set to "0", indicates that the sub indices do not overlap and the declared
sub indices are ordered in ascending order.

single_layer_sub_index: This field is used to indicate the syntax used within the corresponding
multi_field_sub_index structures to represent indexes with multiple key fields. When set to "1" it indicates that
all fields for a given index entry are declared together in a single multi_field_sub_index structure. When set to
"0" it indicates that each key field is contained within a separate multi_field_sub_index structure.

fragment_locator_format: Identifies the format and interpretation of the fragment locator field used within the
multi_field_sub_index (leaf field) to reference a TVA fragment.

Table 12: Fragment reference types

Value Meaning
0x00 local_fragment_locator (see clause 4.8.5.7.2)
0x01 remote_fragment_locator (see clause 4.8.5.7.1)
0x02 - 0xE0 TVA Reserved
0xE1 - 0xFF User defined

low_field_value: The lowest field value that can be found within the sub-index. The meaning of this field depends on
the value of the field_encoding member of the index list structure. The lowest value of the field expressed may
not be the lowest field value actually present in the given fragment, it merely indicates that the referenced sub index
structure may contain entries with fields values in the given range. The type of encoding used and the interpretation of
the low_field_value are defined by the field_encoding within the index_list structure.

high_field_value: The highest field value that can be found within the sub-index. The meaning of this field depends on
the value of the field_encoding member of the relevant index list structure (see clause 4.8.5.3). The highest value
of the field expressed may not be the highest field value actually present in the given fragment, it merely indicates that
the referenced sub index structure may contain entries for key field values in the given range. The type of encoding used
and the interpretation of the high_field_value are defined by field_encoding within the index_list
structure.

It should be noted that the high_field_value for all but the first field may be lower than the previous
high_field_value sub index entry. This is caused when there is a change in the value of the parent field.

For example if we have an index keyed on channel and event time fields, we could have a set of sub indexes with the
following ranges:

• Sub index 1 - channel high_field_value = "3", event time high_field_value = "12:00".

• Sub index 2 - channel high_field_value = "4" event time high_field_value = "09:00".

Where the index uses multiple fields, the declaration order of the high_field_values shall match that defined for
the index within the index_list structure.

When defining the range of values that a particular sub index shall cover, sufficient space should be left to enable the
addition of further index entries without unduly impacting other sub indices. For example if a sub-index can hold a
maximum of say 64K entries, it is recommended that the range of current entries should equal around half to two thirds
the space. This leaves sufficient room for additional entries without having to changing the way in which the index is
split into sub index structures.

sub_index_container: The id of the container carrying the described multi_field_sub_index.

sub_index_identifier: This field identifies the multi_field_sub_index structure instance containing the
described sub index. To locate the sub index within the container (with id = sub_index_container) the
container_header is searched, for a structure of type "multi_field_sub_index" with a structure_ id equal
to the sub_index_identifier.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 61

4.8.5.5 Multi_field_sub_index

A multi field sub index provides references to TVA fragments, which contain field values within the range specified for
this sub index. The structure supports indexes with both single and multiple key fields. In the case of indices with
multiple key fields, the syntax provides two methods:

• Single Layer - All key fields defined together within a single multi_field_sub_index.

• Multi Layer - Each multi_field_sub_index defines a single field of a key.

4.8.5.5.1 Single Layer Structures

Single Layer Structures provide a simple mechanism for describing multiple key field indices. As each entry in the
structure can be decoded one by one in a straightforward manner, this structure would be preferred in a situation where
the received index data need to be reorganized in the PDR before its use. Note that the index data can be restructured
inside the PDR according to its own storage method and query processing policy. For example, a PDR may want to
reorganize one of the received indices in its own B-tree index.

In addition, the Single Layer Structure provides an efficient mechanism for representing multiple key field indexes,
where there is typically a one to one mapping e.g. <surname, givenname>.

4.8.5.5.2 Multi Layer Structures

Multi Layer Structures provide an efficient mechanism for describing multiple field indices with common key field
values. This is achieved with the use of multiple multi_field_sub_index structures (see figure 33), where each
structure is used to describe one layer of a multi field sub index, (layer is equal to a key field of a multi field index).

Each index entry, within the multi_field_sub_index, points to further multi_field_sub_index structures
(except for the leaf field), which contain index entries having the declared field value.

The multi_field_sub_index structure is formed of two parts:

• multi_field_header.

• multi_field_index_entries.

The multi_field_header defines how the multi_field_index_entries sub structure should be
interpreted and indirectly defines the size of each index entry.

All entries within the multi_field_index_entries sub structure are ordered in ascending order.

All entries are of a fixed size, which enables the sub structure to be efficiently searched using a binary search algorithm.

The number of entries within the structure is not explicitly defined, but can be inferred as follows:

num_entries = (structure_length -
sizeof(multi_field_header))/sizeof(multi_field_index entry)

It should be noted that the syntax used within multi_field_sub_index structures is not always common across
all sub indices. Therefore the header of each multi_field_sub_index should be parsed to infer the syntax used
within a given instance.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 62

Syntax No. of Bits Identifier
multi_field_sub_index() {
 multi_field_header {
 leaf_field 1 bslbf
 multiple_locators 1 bslbf
 reserved 6 bslbf
 }
 if(single_layer_sub_index == '0') {

multi_layer_sub_index_structure()
 } else {

single_layer_sub_index_structure()
 }
}

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 63

English French Italianmulti_field_sub_index with
Key field = Language

multi_field_sub_index with
Key field =Title

multi_field_sub_index with
Key field = Genre

T
ita

ni
c

th
e

m
ov

ie

S
ta

r
W

ar
s

IV

T
he

 G
re

at
 E

sc
ap

e

G
re

at
 E

xp
ec

ta
tio

ns

Ju
ra

ss
ic

 P
ar

k

Movies Sport/Football

T
ita

ni
c

le
 f

ilm

L'
É

to
ile

 F
ai

t l
a

gu
er

re
 Iv

La
 G

ra
nd

e
É

va
si

on

G
ra

nd
es

 E
sp

ér
an

ce
s

P
ar

c
Ju

ra
ss

iq
ue

T
ita

ni
c

th
e

m
ov

ie

S
ta

r
W

ar
s

IV

T
he

 G
re

at
 E

sc
ap

e

A
sp

et
ta

tiv
e

G
ra

nd
i

Ju
ra

ss
ic

 P
ar

k

English

W
or

ld
 C

up

S
po

rt
s

N
ig

ht

P
re

m
ie

rs
hi

p
Le

ag
ue

French

ta
ss

e
du

 m
on

de

multi_field_sub_index (structure_id = 101) leaf_field = '0' child_sub_index_ref = 102

multi_field_sub_index (structure_id = 102) leaf_field = '0' child_sub_index_ref = 13

 range_end_offset = 2 range_end_offset = 4

range_end_offset = 9 range_end_offset =1 4 range_end_offset = 17 etc

multi_field_sub_index (structure_id = 13) leaf_field = '1'

Index Entries Container structures

range_end_offset = 4

Figure 33: Example multi_field_sub_index structure (using multi-layer syntax) for an index with three key fields (Genre, Language and Title)

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 64

Given field_values, (a1, a2, ..., an) and (b1, b2, ..., bn), of two multi_field_entries, the order between the two

entries is determined as follows:

(a1, a2, ..., an) is larger than (b1, b2, ..., bn) if and only if there exists an integer i (0 ≤ i≤ n - 1) such that for every

j(0 ≤ j ≤ i - 1), aj = bj and ai > bi.

(a1, a2, ..., an) is smaller than (b1, b2, ..., bn) if and only if there exists an integer i (0 ≤ i ≤ n - 1) such that for every

j(0 ≤ j ≤ i - 1), aj = bj and ai < bi.

(a1, a2, ..., an) is equal to (b1, b2, ..., bn) if and only if for every i(1 ≤ i ≤ n), ai = bi.

Specifically, within the multi_field_sub_index() structure, for all j between 0 and num_entries-1
(field_value[j,0], …, field_value[j,k]) is smaller than (field_value[j+1,0], …, field_value[j+1,k])

leaf_field: This shall be set to "1" when the multi_field_sub_index carries the leaf field of an index (last
indexed field). Which indicates that the structure contains references to fragments and not to further
multi_field_sub_index structures. This field is only used within multi layer sub indexes. When a single layer
sub index is being described this flag shall be ignored.

multiple_locators: A flag which when set to "1" indicates that there are potentially multiple referenced fragments
which have the same set of key field values. This provides a more bandwidth efficient mechanism, when multiple
fragments have the same set of key values. The actual fragment locators are carried in a separate structure within the
container and an offset is used to reference the set of relevant locators within the structure. When the flag is set to "0" it
indicates that fragment_locators are defined inline.

Syntax No. of Bits Mnemonic
single_layer_sub_index_structure () {
 multi_field_index_entries {
 for (j=0; j<num_entries; j++) { …
 for(f=0; f<num_fields; f++) {
 field_value field encoding

dependent
uimsbf

 }
 if(multiple_locators == '1') {
 locator_end_offset 16 uimsbf
 }
 else {
 fragment_locator()
 }
 }
}

field_value: The value of the key field of the referenced fragment. The meaning of this field depends on the value of
the field_encoding member of the relevant index list structure (see clause 4.8.5.4). Only values of the key field
within the range given for this sub_index structure, by the relevant index structure are allowed (see clause 4.8.5.4).

fragment_locator: When the multiple_locators flag is set to "0" in the multi_field_header this field is used to
reference a fragment, having the set of specified key field values. The format of this locator is dependent on the
fragment_locator_format defined for this index within the index_list structure. For an explanation of the
various defined locator formats please refer to clause 4.8.5.7.

locator_end_offset: When the multiple_locators flag is set to "1" in the multi_field_header this field is
used to indicate the inclusive end offset within the fragment_locators structure where the set of valid locators
can be found. The format of these locators is defined by the fragment_locator_format declared within the
index_list structure. The fragment_locator structure instance in which the locators can be found is the
fragment_locator structure with the same structure_id value as that of this sub index structure.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 65

The locator_start_offset is implicit from the previous entry within the multi_field_sub_index, as
follows:

• If it is the first entry within the multi_field_index_entries then locator_start_offset shall
equal 0.

• If it is not the first entry, the previous entries locator_end_offset + 1 shall be used as the current
entries inclusive locator_start_offset.

if (current index != 0) {
 locator_start_offset = multi_field_index_entries[current index-1].locator_end_offset
+ 1;
 }else {
 locator_start_offset = 0;
}

It should be noted that these references are based on fragment locator entries and not byte offsets. The actual byte offset
within the fragment_locators structure is calculated as follows:

byte_offset = locator_end_offset * sizeof(fragment_locator);

Syntax No. of Bits Mnemonic
multi_layer_sub_index_structure () {

if (leaf_field='0') {
child_sub_index_ref 8 uimsbf

}
 multi_field_index_entries {
 for (j=0; j<num_entries; j++) { …
 field_value field encoding

dependent
uimsbf

 if(leaf_field == '1') { …
 if(multiple_locators == '1') {
 locator_end_offset 16 uimsbf
 }
 else {
 fragment_locator()
 }
 }
 else {
 range_end_offset 16 uimsbf
 }
 }
 }
}

For all fields not described, please refer to the semantics for the single_layer_sub_index_structure fields
found above.

child_sub_index_ref: This value identifies a further multi_field_sub_index structure within the current
container which holds index entries having a field value equal to that defined within this sub index. The combination of
this value and the range_end_offset enables you to locate a set of index entries, which have a specific key field
value.

range_end_offset: This field defines the set of entries within the referenced multi_field_sub_index (a
multi_field_sub_index with its structure_ id equal to child_sub_index_ref) having a key field value
equal to that defined by the field_value.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 66

The value is an inclusive offset from the start of the multi_field_index_entries of the target
multi_field_sub_index, where the end_offset for the set of entries that have the declared value can be
found. The range_start_offset is implicit from the previous, entry within the multi_field_sub_index, as
follows:

• If it is the first entry within the multi_field_index_entries then start_offset shall equal 0.

• If it is not the first entry, the previous entries range_end_offset + 1 shall be used as the current entries
inclusive range_start_offset.

if (current index != 0) {
 range_start_offset = multi_field_index_entries[current index-1].range_end_offset +
1;
 }else {
 range_start_offset = 0;
}

It should be noted that these references are based on index entries and not byte offsets. So the actual byte offset within
the structure is calculated as follows:

byte_offset = (range_end_offset * sizeof(multi_field_index_entry)) +
sizeof(multi_field_header)

4.8.5.6 Fragment locators structure

The fragment_locators structure is used to carry fragment_locators, where there are multiple fragments
with the same set of key field values. This structure is referenced by the multi_field_sub_index structure.

There can be multiple fragment_locators structures within a single container and the structure_id is used to identify an
instance. The structure_id shall be set to the same structure_id value to that of the associated sub index structure. So for
example if the sub index has a structure_id of "0×03" then the corresponding fragment_locators structure will have a
structure_id of "0×03".

Syntax No. of Bits Mnemonic
fragment_locators() {
 for(int i=0; i<num_locators; i++) { …
 fragment_locator()
 }
}

num_locators: This value is inferred from the size of the structure which is declared within the containers
container_header.

I.e. num_locators = structure_length/sizeof(fragment_locator).

fragment_locator: This field is used to convey a reference to a TVA fragment. The format of this locator is dependent
on the fragment_locator_format defined for this index within the index_list structure. For an explanation
of the various defined locator formats please refer to clause 4.8.5.7.

4.8.5.7 Fragment_locator formats

There are a number of defined fragment locator formats to enable the referencing of fragments from an index entry.

4.8.5.7.1 Referencing fragments in another container

When a data structure becomes quite large, or it is a requirement to be able to carousel the index at a different rate to
that of the data, it is advantageous to split the index and data across independent containers. This format provides a
mechanism for an index entry to reference a TVA fragment within another container.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 67

Syntax No. of Bits Mnemonic
remote_fragment_locator() {
 target_container 16 uimsbf
 target_fragment 24 uimsbf
}

target_container: The container ID of the container holding the encapsulation structure for the target fragment.

target_fragment: A 24 bit identifier which uniquely identifies a fragment within the target container. To locate the
actual fragment, the appropriate container should be loaded and the encapsulation structure searched to find a matching
fragment_id. Once the fragment_id has been located the appropriate TVA fragment can be found.

4.8.5.7.2 Referencing a fragment within the same container

It is quite possible to use the above method for referencing fragments within the same container, however it is not the
most efficient way. Therefore the following method is supported.

Syntax No. of Bits Mnemonic
local_fragment_locator() {
 fragment_offset 16 uimsbf
}

fragment_offset: The offset within the encapsulation structure, where the fragment can be found. It should be noted
that the offset is an index into the encapsulation structure and not a byte offset. The byte offset can be calculated as
follows:

byte_offset = (sizeof(encapsulation_entry) * fragment_offset) +
encapsulation_header.²

4.8.6 Binary representation of Simple Types

Within the Index list structure it is a requirement to define the encoding used to represent each of an index's key fields.
The following is a list of XML Schema defined primitive simple types used within the TV-Anytime schema and how
they should be encoded, when used within the context of an index.

SimpleType field_encoding value Encoding
string 0×0000 String
anyURI 0×0000 String
boolean 0×0204 unsigned byte with false = "0×00" and

true = Non zero value e.g. 0×ff
NMTOKEN 0×0000 String
gYear 0×0101 unsigned binary - Big-Endian
date 0×0401 Modified Julian Date (TVA BiM codec

clause 4.4.2.4.3)
dateTime 0×0400 Modified Julian Date and Milliseconds

(TVA BiM codec, clause 4.4.2.4.2)
duration 0×0400 Modified Julian Date and Milliseconds

(TVA BiM codec, clause 4.4.2.4.2)
integer 0×0202 one bit to indicate sign (0:positive,

1: negative), followed by abs(value) using
vluimsbf5.

unsignedShort 0×0101 unsigned binary - Big-Endian
unsignedLong 0×0203 vluimsbf8
unsignedInt 0×0201 unsigned binary - Big-Endian
nonNegativeInteger 0×0203 vluimsbf8
positiveInteger 0×0203 vluimsbf8
float 0×0300 signed float
double 0×0302 signed double

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 68

4.8.7 Indexes based on Classification Schemes

When creating an index based on a Classification Scheme it is recommended that the key field used is the href
attribute within the ControlledTermType and that its value is a full de-referenced URI i.e. not an Alias.

It is also recommended that all entries within the index use a single classification scheme. The indexing solution can
support the use of mixed classification schemes but it may present problems to an application, which wishes to search
the index. For example, there may be more than one reference value for genre "Sport".

4.9 Notion of Validation
TV-Anytime deals with metadata and in particular with large and highly structured metadata.

An XML Schema document is called a schema. The TVA schema is thus an XML schema document, namely the data
model defining the rules to be respected to edit "valid" TVA metadata description. This includes information about
default values, element types, attributes types and type hierarchies.

The validation process ensures that the descriptions transmitted to the application respect all the rules defined in the
associated schema and thus that it is conformant to the standard having specified this schema. The nature (i.e. the type)
of each description item (element or attributes) are also determined and controlled during this process. Validation is the
way to make data more explicit to an application. It is a transformation from raw un-typed well-formed (syntactically
correct according to the schema definitions) information into typed useful information. The generic nature of the
validation process is spelled out by W3C in the XML schema specification in [2].

Because the TV-Anytime encoding mechanism produces by nature only valid encoded metadata description and due to
the design of the TV-Anytime schema and of the associated fragmentation mechanism, each partial description shall be
valid according to the TVA schema, first, after the decoding of the TVAMain fragments and, afterwards, of any of its
associated TVA fragments.

4.10 Extensibility of the TV-Anytime schema

4.10.1 Introduction

A TVA metadata system includes a common core set of metadata as defined in TS 102 822-3-1 [9] to ensure a
minimum level of interoperability. When performing extensions to the TV-Anytime schema it is desirable to maintain
both backwards and forwards compatibility, however it is recognized that this is not always possible due to constraints
within the schema language use and the impact that using standard schema extensions mechanisms have on the
readability of the resulting schema.

4.10.2 Receiver support for non backwards and forwards compatible
versions

In the case where it is not practical to support both backwards and forwards compatibility within a new version of the
TV-Anytime metadata schema, specific actions must be taken when migrating to the new version within the delivery
system. The operator has the following options:

• Download new code to all receivers which are able to interpret both the old and new version of the TV-
Anytime metadata schema. When all receivers have been updated, the metadata service may be switched to use
the new TV-Anytime metadata schema.

• Simulcast metadata services for both the old and new version of the TV-Anytime metadata schema. New
receivers will be able to receive the metadata service using the new TV-Anytime schema, whilst the old
receivers can continue to receive the metadata service using the old TV-Anytime schema.

The actual migration path taken will depend very much on the operators ability to upgrade code on the deployed
receiver population.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 69

4.10.3 Extensibility mechanisms supporting forwards and Backwards
Compatibility

The MPEG-7 Definition Description Language (DDL) that is used as the TV-Anytime representation language for
metadata is the main instrument for this extensibility.

As shown in figure 34, mechanisms need to be defined to allow the extension of the specification with new TV-Anytime
definitions, or for private extensions.

Tv-Anytime Not defined in the standard

DDL

DS
DS

DS

D D

DS

D

D

D

DS

DS

DS

DD

D

D

DD

Figure 34: Representation of a TV-Anytime extension

The associated TVA extensibility rules are presented in the following clause.

4.10.4 Extensibility rules

The following clause defines rules to support specification and private extensions in a backward and forward
compatible manner:

• Forward compatibility means a decoder that is only aware of a previous version of a schema is able to partially
decode a description conformant to an updated version of that schema.

• Backward compatibility means a decoder that is only aware of a new version of the schema is able to partially
decode a description conformant to a previous version of that schema.

With BIM, backward compatibility is provided by the unique reference of the used schema in the DecoderInit.
Forward compatibility is ensured by a specific syntax defined in MPEG-7 Specification [1] clauses 7 and 8. Its main
principle is to use the namespace of the schema. The binary format allows one to keep parts of a description related to
different schemas in separate chunks of the binary description stream, so that parts related to an unknown schema may
be skipped by the decoder. The Decoder Initialization identifies schema versions with which compatibility is preserved
by listing their Schema URIs. A decoder that knows at least one of the Schema URIs will be able to decode at least part
of the binary description stream.

The following rules shall be applied so as to define a valid extension of the standard, in particular to allow the
compatibility mechanisms described above. They constrain the extensibility of TV-Anytime schemas:

• Extension must be defined using the TVA schema representation language (i.e. MPEG-7 DDL). The way these
extended schemas are transmitted is out of the scope of the present document.

• The module definition must have a prose definition that describes the syntactic and semantic requirements of
the elements, attributes and/or content models that it declares.

• Existing element names should never be re-used. New elements names should be defined under their own
namespace (e.g. for another version of the TVA specification or for private extensions).

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 70

• The module definition's elements and attributes must be part of an XML namespace. If the module is defined
by an organization other than TVA and MPEG (for imported MPEG datatypes and description schemes), this
namespace must NOT be the same as the namespace in which other TVA and MPEG standards are defined.

• The namespace under which extensions are defined will need to be clearly identified.

• Any extensions to existing schema should not obscure existing functionality. Thus existing functionality
should not be contained within a new element that an earlier decoder will not understand.

• Wherever possible, an extended schema should only add functionality and not replace existing functionality.
This will allow a version 1 decoder to maximally understand a version 2 document.

• An application should ignore any elements or attributes they do not need, do not understand or cannot use.

Table 13 provides the list of conditions under which the extensions of TV-Anytime metadata definitions are supported or
not.

Table 13: Types of extension permitted in future versions of TV-Anytime

Condition/Type of extension of TV-Anytime metadata
definitions

Status

Condition 1: A new global element of existing type NOT PERMITTED
Condition 2: A new global attributes added to existing type PERMITTED
new type (simple or complex - but see below for limitations
on derivation, etc)

PERMITTED

Polymorphism of existing type by Inheritance with restriction PERMITTED (But see rules above)
Polymorphism of existing type by Inheritance with extension PERMITTED (But see rules above)
Polymorphism of existing type by Redefining types during
import

NOT PERMITTED

Substitution Groups NOT PERMITTED.
Instead of using substitution groups,

explicit derivation can be used. This is
safer for future extensions.

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 71

Annex A (informative):
Bibliography

• XML Path Language, W3C Recommendation, 16 November 1999.

NOTE: Available at: http://www.w3.org/TR/xpath.html.

• Namespaces in XML, W3C Recommendation, 14 January 1999.

NOTE 1: Available at: http://www.w3.org/TR/REC-xml-names/.

NOTE 2: These documents are maintained by the W3C (http://www.w3.org)

• IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".

• XML, Extensible Markup Language (XML) 1.0 second edition, October 2000.

NOTE: Available at: http://www.w3.org/TR/2000/REC-xml-20001006.

• IETF RFC 3629: "UTF-8, a transformation format of ISO/IEC 10646 (2003)".

NOTE: Available at http://www.ietf.org/rfc/rfc3629.txt.

http://www.w3.org/TR/xpath.html
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.ietf.org/rfc/rfc3629.txt

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 72

List of figures
Figure 1: Overview of the scope of TVA Specification on Metadata and System ... 8

Figure 2: Unidirectional environment ...12

Figure 3: Processes associated with delivery of metadata ...14

Figure 4: Functional metadata processing architecture in a unidirectional environment ..15

Figure 5: Fragmentation of a TV-Anytime metadata description ...17

Figure 6: UML-like representation of a TVAMain fragment ..18

Figure 7: UML-like representation of a MetadataOriginationInformation fragment ..19

Figure 8: UML-like representation of a ProgramInformation fragment ..20

Figure 9: UML-like representation of a GroupInformation fragment ...21

Figure 10: UML-like representation of a BroadcastEvent fragment ...22

Figure 11: UML-like representation of a Schedule fragment ..23

Figure 12: UML-like representation of a ServiceInformation fragment ...24

Figure 13: UML-like representation of PersonNameType ..24

Figure 14: UML-like representation of a PurchaseInformation fragment ...25

Figure 15: UML-like representation of a ProgramReviews fragment ...25

Figure 16: UML-like representation of a ClassificationScheme fragment ..26

Figure 17: UML-like representation of a SegmentInformation fragment ...27

Figure 18: UML-like representation of a SegmentGroup fragment ..27

Figure 19: UML-like representation of a Package fragment ...28

Figure 20: UML - like representation of a InterstitialCampaign fragment ..28

Figure 21: UML - like representation of a RMPIDescription fragment ...28

Figure 22: UML - like representation of a CouponDescription fragment ..29

Figure 23: UML - like representation of a TargetInformation fragment ..30

Figure 24: UML - like representation of an InterstitialBreak fragment ...30

Figure 25: UML - like representation of a Rule fragment ...31

Figure 26: UML - like representation of the ContentListType used by the following fragments31

Figure 27: UML-like representation of a PushDownloadProgram fragment ..32

Figure 28: BiM bitstream without Zlib optimized decoder ...40

Figure 29: BiM stream with Zlib optimized decoder ..40

Figure 30: Schematic representation of interrelationship between structures within a container45

Figure 31: Schematic representation of interrelationship between Index containers and Data containers50

Figure 32: Indexing structure ..52

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 73

Figure 33: Example multi_field_sub_index structure (using multi-layer syntax) for an index with three key fields
(Genre, Language and Title) ...63

Figure 34: Representation of a TV-Anytime extension ..69

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 74

List of tables
Table 1: Table of values for the EncodingVersion parameter ...34

Table 2: Character encoding and their termination values ..35

Table 3: Table of values for the IndexingVersion field ...35

Table 4: Structure_type assignments ...43

Table 5: Structure_type and their matching valid structure_id ...43

Table 6: Valid fragment_reference_formats..46

Table 7: Fragment_type assignments ..56

Table 8: field_identifier Assignments ...57

Table 9: Encoding and interpretation of the field_value, low_field_value and high_field_value field57

Table 10: Encoding types and their respective sizes ...58

Table 11: Defined index order for primitive simple types ..59

Table 12: Fragment reference types ..60

Table 13: Types of extension permitted in future versions of TV-Anytime ...70

ETSI

ETSI TS 102 822-3-2 V1.6.1 (2010-07) 75

History

Document history

V1.1.1 October 2003 Publication

V1.2.1 September 2004 Publication

V1.3.1 January 2006 Publication

V1.4.1 November 2007 Publication

V1.5.1 May 2009 Publication

V1.6.1 July 2010 Publication

	Intellectual Property Rights
	Foreword
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions, abbreviations and mnemonics
	3.1 Definitions
	3.2 Abbreviations
	3.3 Mnemonics

	4 System mechanisms in a unidirectional environment
	4.1 Overview
	4.1.1 Main features of a unidirectional environment
	4.1.2 Access methods
	4.1.3 Definition of a TV-Anytime metadata description
	4.1.4 TV-Anytime metadata description size

	4.2 Metadata general delivery framework
	4.2.1 Introduction to fragmentation
	4.2.2 Introduction to encoding
	4.2.3 Introduction to encapsulation
	4.2.4 Introduction to Indexing
	4.2.5 Logical decoder architecture

	4.3 Metadata description fragmentation
	4.3.1 TVA metadata fragments
	4.3.1.1 TVAMain fragment
	4.3.1.2 MetadataOriginationInformation fragment
	4.3.1.3 ProgramInformation fragment
	4.3.1.4 GroupInformation fragment
	4.3.1.5 OnDemandProgram and OnDemandService fragment
	4.3.1.6 BroadcastEvent fragment
	4.3.1.7 Schedule fragment
	4.3.1.8 ServiceInformation fragment
	4.3.1.9 CreditsInformation fragments
	4.3.1.9.1 PersonName fragment
	4.3.1.9.2 OrganizationName fragment

	4.3.1.10 PurchaseInformation fragment
	4.3.1.11 Review fragment
	4.3.1.12 User Description information
	4.3.1.13 ClassificationScheme fragments
	4.3.1.13.1 CSAlias fragment
	4.3.1.13.2 ClassificationScheme fragment

	4.3.1.14 Segmentation
	4.3.1.14.1 SegmentInformation fragment
	4.3.1.14.2 SegmentGroupInformation fragment

	4.3.1.15 Package Fragment
	4.3.1.16 Interstitial Campaign Fragment
	4.3.1.17 RMPI Fragment
	4.3.1.18 Coupon Description Fragment
	4.3.1.19 TargetingInformation Fragment
	4.3.1.20 InterstitialBreak Fragment
	4.3.1.21 Rule Fragment
	4.3.1.22 Recording Cache Fragments
	4.3.1.22.1 Request Fragment
	4.3.1.22.2 Replace Fragment
	4.3.1.22.3 Expire Fragment

	4.3.1.23 PushDownloadProgram fragment

	4.3.2 Fragment Identification and Versioning
	4.3.3 Element ordering
	4.3.4 TVA access unit
	4.3.5 Use of TVAIDType, TVAIDRefType and TVAIDRefsType
	4.3.6 Use of ID, IDRef, XPath and xml:lang

	4.4 Fragment encoding
	4.4.1 TVA-init message
	4.4.1.1 Overview

	4.4.2 MPEG-7 system profile
	4.4.2.1 DecoderInit
	4.4.2.1.1 UnitSizeCode
	4.4.2.1.2 InitialDescription

	4.4.2.2 FragmentUpdateCommand
	4.4.2.2.1 Guidelines for the use of the FragmentUpdateUnit

	4.4.2.3 ContextMode
	4.4.2.4 TV-Anytime codec
	4.4.2.4.1 Classification scheme wrapper
	4.4.2.4.2 dateTime Codec
	4.4.2.4.3 date codec
	4.4.2.4.4 Zlib optimized decoder

	4.5 Carriage of TV-Anytime data
	4.5.1 Containers
	4.5.1.1 Carriage of containers
	4.5.1.2 Classification of containers
	4.5.1.3 Container identification

	4.5.2 Container versioning
	4.5.2.1 Container syntax
	4.5.2.2 Container map
	4.5.2.2.1 Container map requirements

	4.6 Fragment encapsulation
	4.6.1 Encapsulation format
	4.6.1.1 Encapsulation structure
	4.6.1.2 Moved fragments structure
	4.6.1.3 Fragment_Reference formats
	4.6.1.3.1 Referencing a BiM encoded fragment

	4.6.1.4 Data repository
	4.6.1.4.1 Binary data repository

	4.6.1.5 Alternative Encoding formats

	4.7 Fragment Management
	4.7.1 Fragment Id
	4.7.2 Fragment Add
	4.7.3 Fragment Update
	4.7.4 Fragment Move
	4.7.5 Fragment Delete

	4.8 Indexing
	4.8.1 Introduction
	4.8.2 Requirements
	4.8.3 Carriage of Indexing Information
	4.8.4 Data repository
	4.8.4.1 String repository

	4.8.5 Index structures
	4.8.5.1 Identification of indices
	4.8.5.1.1 Use of Ids
	4.8.5.1.2 Use of XPath

	4.8.5.2 Introduction to the multi-key index
	4.8.5.3 Index List
	4.8.5.4 Index
	4.8.5.4.1 Field Value Ordering

	4.8.5.5 Multi_field_sub_index
	4.8.5.5.1 Single Layer Structures
	4.8.5.5.2 Multi Layer Structures

	4.8.5.6 Fragment locators structure
	4.8.5.7 Fragment_locator formats
	4.8.5.7.1 Referencing fragments in another container
	4.8.5.7.2 Referencing a fragment within the same container

	4.8.6 Binary representation of Simple Types
	4.8.7 Indexes based on Classification Schemes

	4.9 Notion of Validation
	4.10 Extensibility of the TV-Anytime schema
	4.10.1 Introduction
	4.10.2 Receiver support for non backwards and forwards compatible versions
	4.10.3 Extensibility mechanisms supporting forwards and Backwards Compatibility
	4.10.4 Extensibility rules

	Annex A (informative): Bibliography
	History

