

Multicast Webinar

Thomas Kernen

Agenda

- Multicast vs. unicast delivery
- Multicast enabled deployments
- Addressing, replication and optimisation
- IPv6 & multicast
- Growth of Internet based video services
- Automatic IP Multicast Tunneling

Unicast vs. Multicast

Multicast Application Types

Multicast everywhere: Contribution, Distribution & Home Networks

Multicast Group Addresses (224.0.0.0/4)

- Link-Local Address Range 224.0.0.0–224.0.0.255
- Global Address Range 224.0.1.0–238.255.255.255
 Generally intended for "global" Internet scope multicast
- Administratively Scoped Address Range
 239.0.0.0–239.255.255.25
- Scope Relative Address Range
 Top 256 addresses of a Scoped Address Range

Global Multicast Address Assignment -GLOP

Static Group Address Assignment

RFC 3180—GLOP Addressing in 233.0.0.0/8

Group range: 233.0.0.0–233.255.255.255

Your Autonomous System number is inserted in middle two octets

Remaining low-order octet used for group assignment

EGLOP Addresses

Make use of private AS numbers

Assigned by a Registration Authority

Global Multicast Address Assignment - SSM

Static Group Address Assignment

Source Specific Multicast

Address range: 232.0.0.0/8

Flows based on both Group and Source address

Two different content flows can share the same Group address without interfering with each other

Better control and management of (re)sources

Provides virtually unlimited address space!

Preferred method for global one-to-many multicast

Private Administratively Scoped Address Assignment

Assigned from the private 239.0.0.0/8 range
 May be subdivided into geographic scopes ranges
 Administration responsibility can be by scope range

Multicast Distribution Trees Shortest Path/Source Tree

Multicast Distribution Trees Shared tree

Multicast Distribution Trees Shared tree and Source tree

Barriers to Multicast Deployment

- Global Multicast Address Allocation
 - Dynamic Address Allocation
 - No adequate dynamic address allocation methods exist!
 - Static Address Allocation (GLOP)
 - Based on Autonomous System number
 - Insufficient address space for large Content Providers
- Multicast Content "Jammers"

Undesirable sources on a multicast group "Capt. Midnight" sources bogus data/noise to group Can cause Denial of Service attack by congesting low speed links

Source Specific Multicast (SSM)

- Uses Source Trees only
- Assumes one-to-many model Most Internet multicast fits this model
 Video Contribution and Distribution also fit this model
- Hosts responsible for source discovery

Typically via some out-of-band mechanism Web page, Content Server, Management tool, etc. Eliminates need for Rendezvous Points and Shared Trees Eliminates need for MSDP (inter domain RP based multicast)

SSM Overview

- Hosts join a specific source within a group Content identified by specific (S,G) instead of (*,G) Hosts responsible for learning (S,G) information
- Last-hop router sends (S,G) join toward source Shared Tree is never Joined or used Eliminates possibility of content Jammers Only specified (S,G) flow is delivered to host
- Eliminates Networked-Based Source Discovery No RPs for SSM groups
- Simplifies address allocation

Content sources can use same group without fear of interfering with each other

SSM Example

SSM Example

IGMP

- How hosts (receivers) tell routers about group membership
- Routers solicit group membership from directly connected hosts
- RFC 1112 specifies first version of IGMP
- RFC 2236 specifies IGMPv2 Most widely deployed and supported
- RFC 3376 specifies IGMPv3

Growing support (required for SSM)

H1—Member of 224.1.1.1

IPv6 and Multicast

- Designed into IPv6 specification from the start Multicast was originally designed after the initial IPv4 protocol
- Natively part of discovery and information exchange between protocols Link local discovery
 Routing protocols message exchange between neighbors
 ICMPv6 messages
 Service discovery (DNS, NTP, ...)
- Multicast in IPv6 is part of the system and must be treated as such
- Leverage the rollout of IPv6 to ensure multicast is part of the service!

IPv6 Multicast Addresses - RFC 4291

Note: other scopes (6, 7, 9-D) are unassigned but can be used

IPv6: Multicast Listener Discovery – MLD Multicast Host Membership Control

- MLD specified in RFC's 2710 and 3810
- MLD is equivalent to IGMP in IPv4
- MLD messages transported over ICMPv6
- MLD uses link local source addresses
- MLD packets use "Router Alert" option in IPv6 Hop-by-Hop extension header (RFC 2711) with Hop Limit =1

IPv6: Multicast Listener Discovery – MLD Multicast Host Membership Control

• Version number "confusion":

MLDv1 (RFC 2710) ~ IGMPv2 MLDv2 (RFC 3810) ~ IGMPv3

- MLDv2 router compatible with MLDv1 hosts
- SSM transition through SSM mapping for MLDv1 messages – static or DNS
- MLD snooping

IPv6 Multicast Based Multimedia Services (NTT-East)

• NTT-East rolled out native IPv6 multicast services instead of IPv4 offering IPTV, music and games:

http://www.ipv6style.jp/en/action/20040902/index.shtml

http://www.networkworld.com/news/2009/010809-ntt-ipv6-tv.html

Growth of Internet based video services

Concurrent live streams

Growth of Internet based video services

• Live video:

4% of all consumer traffic by end 2010 9% of all video traffic in 2014

• 2009:

107 PB/month 2775 PB/month

• 2014:

4075 PB/month in 2014 19468 PB/month in 2014

*Cisco VNI June 2010

Source: Cisco Visual Networking Index

Multicast attempt across Unicast "islands"

Unicast fallback

What's Wrong?

• Multicast in the Internet is an all or nothing solution

Each receiver must be on an IP multicast-enabled path Many core networks have IP multicast-enabled, but few edge networks accept multicast transit traffic

- Even multicast-aware content owners are forced to provide unicast streams to gain audience size
- Unicast is unable to scale for streaming live content at current growth rates

Splitters/caches just distribute the problem

Still has a cost per user

As receiver bandwidth increases, problem gets worse

Automatic IP Multicast Tunneling

• Automatic IP Multicast Tunneling:

http://tools.ietf.org/id/draft-ietf-mboned-auto-multicast

- Designed to provide a migration path to a fully multicast enabled backbone
- Allows multicast to reach unicast-only receivers without the need for any explicit tunneling
- Provide benefits of multicast wherever multicast is already deployed Hybrid solution

Multicast networks get the benefit of multicast

• Works seamlessly with existing applications

Requires only client-side shim (somewhere in client) and router support (in some places)

AMT architecture

• AMT Gateway

Initiates connection to the multicast network via an AMT Discovery message Discovery message sent to "well known" Anycast address May be a host (PC, Mac, Xbox, Android, ...) or a gateway/router

• AMT Relay

Listens for AMT Discovery messages to build AMT tunnel to requesting Gateways

May be on a router at the unicast/multicast boundary or in an appliance near the boundary

AMT in action – discovering the Relay

AMT in action – building the tunnel

AMT in action – joining the source stream

AMT in action – serving single receiver

AMT in action – serving multiple receivers

AMT in action – "spreading the word"

AMT in action – "spreading the word"

AMT in action – "spreading the word"

AMT drives global multicast adoption

Summary

- How does multicast defer from unicast delivery?
- How are Service Providers deploying multicast in their own access
 networks for their managed services?
- Can multicast benefit from an IPv6 rollout?
- Why is the Internet not multicast enabled everywhere?
- What solution exists to bridge the multicast islands across the Internet to enable end to end multicast delivery?

AMT References

- Automatic IP Multicast Tunneling: http://tools.ietf.org/id/draft-ietf-mboned-auto-multicast
- UTDallas public Relay/Gateway available

http://cs.utdallas.edu/amt/

• AMT/RTSP Proxy Server:

http://sites.google.com/site/amtproxy/

Octoshape AMT enabled client:

http://www.octoshape.com/?page=showcase/multicast

• Wireshark Dissector for AMT:

http://www.larkwoodlabs.com/wireshark-dissector-for-amt

• EBU Technical Review (December 2010):

http://tech.ebu.ch/webdav/site/tech/shared/techreview/trev_2010-Q4_AMT_Kernen_Simlo.pdf

Thank you.

#