Adriano Grilli Lightdesigner for Filmshooting Master for event technik

Guidelines

Goal: Optimizing the energy consumption on shooting and shows

Approach: Not looking for the **right** solution, but for the **properly** one.

State of the art:

/ LEDs are very often the real eco-friendly lighting solution: not always.

/ Batterie-systems are often a very good power supply option, not always.

Light-emitting diode

excellent ratio light/current ("Lumen/Watt")

Light-emitting diode

excellent ratio light/current ("Lumen/Watt")

Ingredients: basically, Gallium compounds

(e.g. with aluminium, zinc, phosphorus)

Light-emitting diode

excellent ratio light/current ("Lumen/Watt")

Ingredients: basically, Gallium compounds (e.g. with aluminium, zinc, phosphorus)

 \downarrow

Gallium: soft metall, melting point at 29,8 °C (as compound gallium/aluminium, about 83 °C)

Light-emitting diode

excellent ratio light/current ("Lumen/Watt")

Ingredients: basically, Gallium compounds (e.g. with aluminium, zinc, phosphorus)

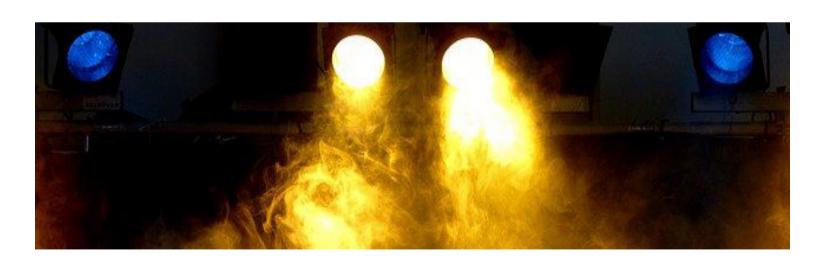
 \downarrow

Gallium: soft metall, melting point at 29,8 °C (as compound gallium/aluminium, about 83 °C)

Bottom line: the lamp needs a suitable cooling system

Tungsten vs Metal-halide ("HMI")

VS


LED

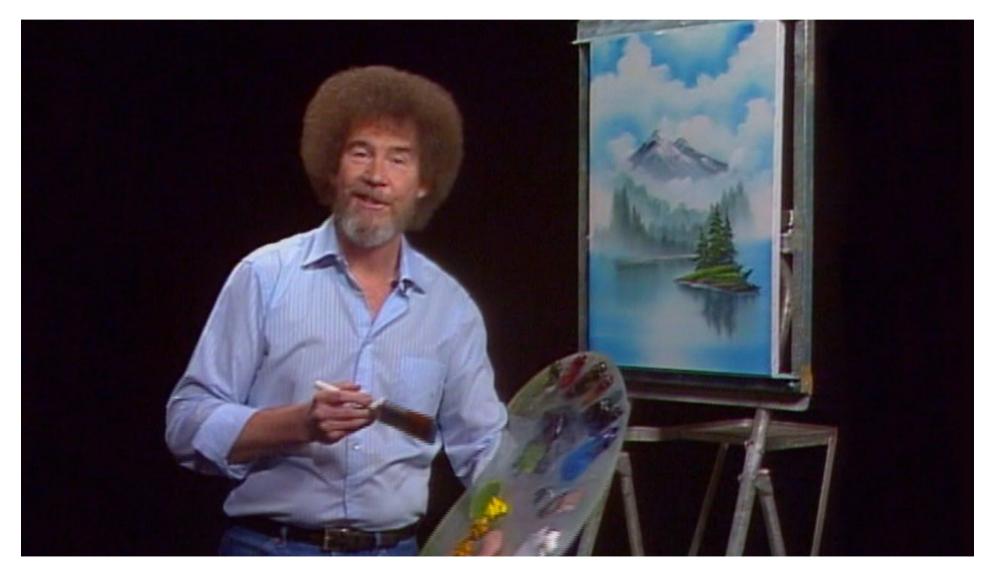
Nature of the Tungsten

(using heat)

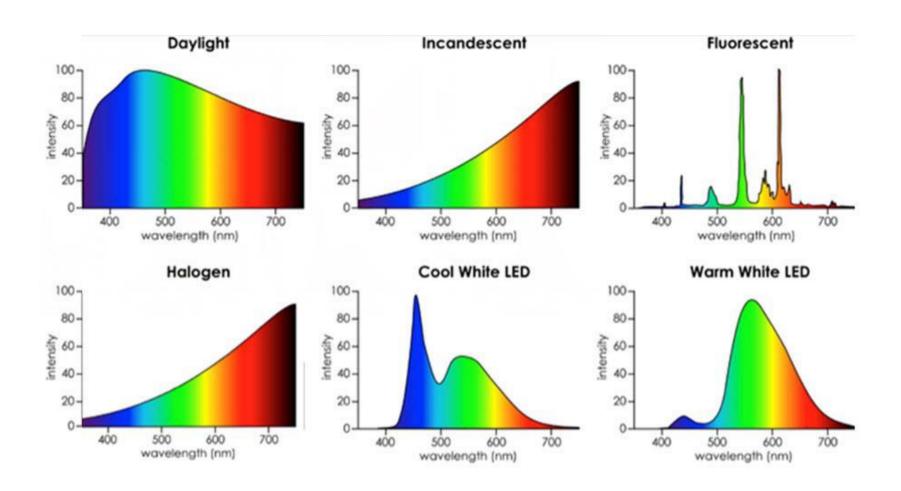
Nature of the gas discharge (using electric arcs)

Adriano Grilli

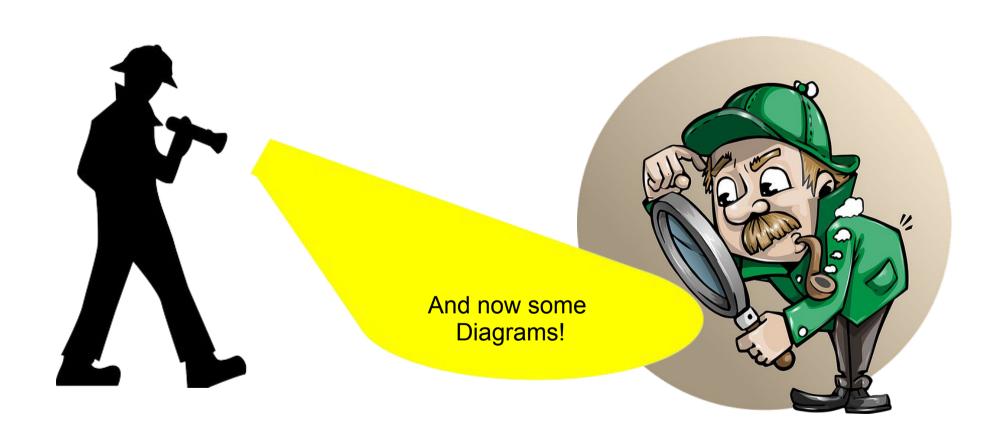
Nature of the LED (RGBW) (converting electrical in electromagnetical energy)



oder



A touch of colour(temperature)


Adriano Grilli

Typical spectrum

Source: Technical University of Braunschweig

Comparing and investigating deeper

Tungsten

VS

Metal-halide ("HMI")

VS

Data	~							
L,	Α	В	С	D	E	F	G	Н
1	Leuchtmittel	Bauart	Kategorie	Lumen	Watt	Sockel	Bauform	Lumen/Watt
27	125W	HMI / MSR	Tageslicht	9800	125	GZX9.5	Brenner	78.4
28	200W HMI	HMI / MSR	Tageslicht	16000	200	GZY9.5	Brenner	80
29	400W	HMI / MSR	Tageslicht	32500	400	GZZ9.5	Brenner	81.25
30	800W HMI	HMI / MSR	Tageslicht	69000	800	G22	Brenner	86.25
31	1200W	HMI / MSR	Tageslicht	110000	1200	G38	Brenner	91.667
32	1800W	HMI / MSR	Tageslicht	165000	1800	G38	Brenner	91.667
33	2500W	HMI / MSR	Tageslicht	240000	2500	G38	Brenner	96
34	4000W	HMI / MSR	Tageslicht	380000	4000	GX38	Brenner	95
35	6000W	HMI / MSR	Tageslicht	600000	6000	GX38	Brenner	100
36	9000W	HMI / MSR	Tageslicht	875000	9000	GX38	Brenner	97.22
37	12000W	HMI / MSR	Tageslicht	1200000	12000	GY38	Brenner	100
38	18000W	HMI / MSR	Tageslicht	1650000	18000	G51	Brenner	91.667
39	20W Tube	LED T8 Tube 150cm	LED	3100	20	G13	Röhre	155
40	4W Birne	Glühbirne klar	LED	400	4	E27	Bulb	100
41	8W Birne	Glühbirne klar	LED	806	8	E27	Bulb	100.75
42	Cree XP-G3	SMD-LED	LED	187	1	Platine	Modul	187

Conclusion #1 (about lighting)

Consider the **power rating** of your tools as well as

the **light beam**, the **color rendition** and the **handling**

you need.

Power Supply

1) Power grid

2) Site power box

3) Film generator

4) Power inverter and battery-based power sources

If generator, then:

Calculation of the required power demand and then,

- how big?
- how loud? (sound recordings; residential areas; night shoots).
- how often?
- how many?
- how green?

If generator, then:

Calculation of the required power demand and then,

/ as big as needed,

/ so silent, little and rarely as possible.

Classic diesel generator

Some alternatives nowaday

Littler gens

 Full-battery-powered power supply

• Hybrid gens (batterypack + range extender)

The dark side of the batteries

Adriano Grilli

A quantum of chemistry

Type of construction

Lithium polymer

The electrode materials determine the nominal voltage of the cell, the quantity of materials determines the energy contained.

Naming according to materials used, including:

(LiPo)

Lead- (Pb) → Automotive Silver-zinc (AgZn) Nickel-cadmium (NiCd) → banned in Germany since 2009. Nickel-metal hydride (NiMH) → small charges, ex: AA and AAA Lithium iron phosphate (LiFePo)

Lithium-ion (Lilon) \rightarrow used with most batteries in the film industry.

Some example of battery-powered supplies

Voltstack

5600 Wh 5000W 150kg Lilon

Instagrid

2100 Wh 3600W 19kg Lilon

Arvey A1

480 to 1920 Wh 1000W from 11kg LiFePo4

Some example of battery-powered supplies

Wattsun 1400 to 7800 Wh 2000W Lilon 17,4kg + 15,2kg/Akku

Betteries
3000 to 12000 Wh
2000 to 5000W
Lilon
(Second Life NMCor NCA-Akkus)
ca. 35kg pro Akku

Conclusion #2

Adriano Grilli

Conclusions #3

- The environmental sustainability of a film arises predominantly in the preparation phase
 - The biggest factors influencing the planning are 1) script; 2) locations; 3) aesthetics.
 - Environmentally sustainable work requires constant attention during filming, especially in dealing with:

```
/ electricity consumption/ material consumption/ cooperation in operation
```

Thank you very much!

Adriano Grilli

www.prismaland.de info@prismaland.de +49 (0)176 77409340