Institut für Rundfunktechnik

Video transport over IP – Can we still avoid the errors?

EBU Seminar: Networks 2007 To IP and Beyond Andreas Metz, IRT

Overview

Video transport over IP

Introduction MPEG-TS Encapsulation Protocol Overhead UDP RTP

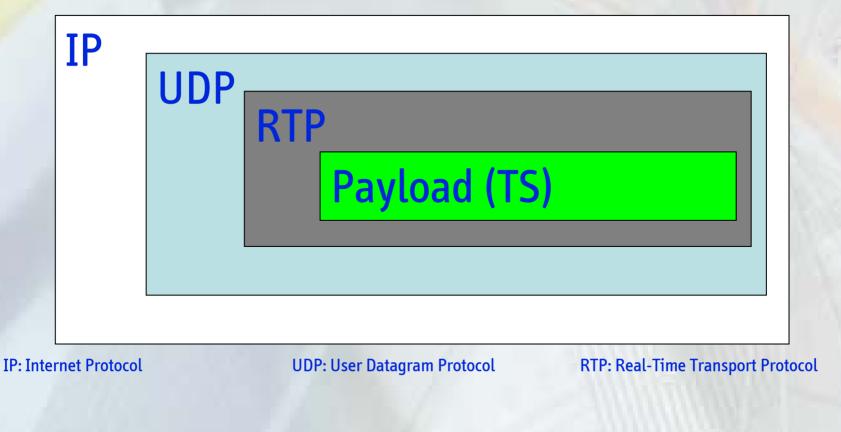
Features of von IP- Networks

IP-Network/Internet Overload Consequence for Real-time applications CoP #3 Quality of Service Feature of CoS Experience: Managed Networks First Measurements

Conclusion

Video transport over IP

On this subject:


- contribution purpose
- high data rates
- Production quality
- post processing

Not:

distribution propose IPTV

MPEG-TS Encapsulation

Structure of an IP-Packet:

Protocol Overhead

	Header	Payload
Ethernet	18 Byte (22 VLAN)	46 – 1500 Byte
IP	20 Byte	26 -1480/(65.515) Byte
UDP	8 Byte	18 – 1472 Byte
RTP	12 Byte	6 – 1460 Byte
Overhead:	40 Byte	Up to 7 MPEG-TS Packets
17 1 10 18	per IP-Packet	(188 Byte, Ethernet)

Bit error and UDP

UDP-Header:

Source Port

Destination Port

Length

Checksum

Checksum:

Verification: if bit errors happen error detection – no error correction possible! in case → <u>reject</u> IP-Packet!!!

A single bit error always causes the loss of the complete IP-Packet!

18 June 2007 © IRT – SN Andreas Metz

RTP

Main features of RTP: Sequence numbering:

Detect packet loss

Detect out of order packets

Timestamp

Synchronisation purpose Calculate network jitter regardless PCR

PCR: Primary Clock Reference

Characteristics of IP-Networks

IP-Network/Internet Overload Consequence for Real-time applications CoP #3 Quality of Service Feature of CoS Experience: Managed Networks

Internet - IP Networks

IP-Networks ≠ **Internet**

Internet: based on Internet Protocol

No QoS Everything can happens at every time

IP-Network:

Managed network Defined QoS Deterministic behaviour (hopefully)

Overload

every single IP-Packet competes with each other

- → intermediate storage within routers (individual delay,]itter)
- \rightarrow buffer over flow
- \rightarrow <u>rejected</u> packets
- → every connections and data streams equally concerned!
- \rightarrow no difference witch contents is carried!

Consequence for Real-time applications

bit error (UDP) overload delay (Jitter) $\rightarrow packet loss \\ \rightarrow packet loss \\ \rightarrow packet loss$

→ Consequence: forward error correction?

Pro MPEG Forum: CoP #3

Codes of Practice #3 : Forward Error Correction (FEC) for MPEG-TS

Matrix: L columns, D rows Correction of burst errors possible! Long delay (particularly at low data rates)

MPEG: Moving Picture Experts Group

Feature: CoP #3

Data stream, Column FEC and row FEC are separate streams

FEC Overhead: 5 – 30 % redundant data necessary!

FEC-Packets are interleaved with data packets
→ to avoid large traffic rate changes (traffic shaping)
→additional delay: depend on the arrangement of packets (up to L x D packet time)

18 June 2007 © IRT – SN Andreas Metz

Quality of Service (QoS)

Priority of Packets (DiffServ) 3 Bit for classification \rightarrow 7 Class of service (CoS) \rightarrow Typical 4 for users \rightarrow 2 classes for OAM Voice over IP, Audio **5 VoIP** e.g. Videoconferences, Video over IP 4 Multimedia **3** Privilege **Preferred data applications 1 Best Effort** all others (Email, www, ...)

QoS: Quality of Service VoIP: Voice over Internet Protocol CoS: Class of Service OAM: Operation, Administration and Maintenance DiffServ: Differentiated Services

18 June 2007 © IRT – SN Andreas Metz

QoS Parameter

QoS Class	Packet loss	Round Trip Delay Backbone (domestic)
VoIP	0,10%	30 ms
Multimedia	0,20%	35 ms
Privilege	0,30%	40 ms
Best Effort	1 %	60 ms

18 June 2007 © IRT – SN Andreas Metz

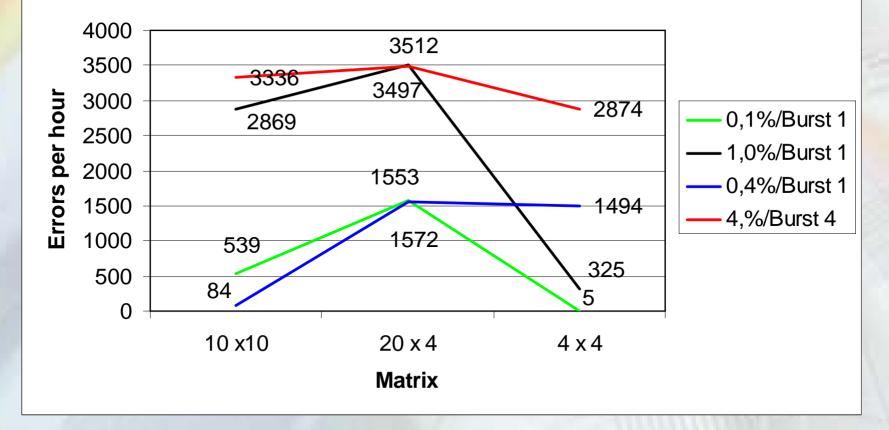
Feature of service class

→ every connection and data within a service class (CoS) have equal rights! Overload within a service class: \rightarrow Reject of packets \rightarrow every connection is concerned!!! Example (multimedia class has a capacity of 10 video streams): A additional video (11th) connection release overload \rightarrow Rejection of packets \rightarrow every present video connection is concerned!!! \rightarrow additional mechanism necessary!

CoS: Class of Service

Experience: Managed Networks

Bit error: \rightarrow single packet loss **Correctable by FEC Overload:** \rightarrow periodic packet loss easy to correct by FEC (within limits, low loss rate) **Re-order:** \rightarrow atypical for managed networks Except auto configuration is used Switch over (equivalent network, cut-off, auto configuration): \rightarrow burst errors burst rate depend on data rate common not compensation able Interrupt!


First Measurements

Configurations: video rate: 10 Mbit/s

Matrix (CoP 3)	Max. corrigible errors	Delay
4x4	4	25 ms
10 x 10	10	180 ms
20 x 4	4	142 ms

First Measurement Results (1)

Pro-MPEG Forum FEC / Random Errors

18 June 2007 © IRT – SN Andreas Metz

First Measurement Results (2)

Random Errors:

Data and corresponding FEC packets are lost Constellations with the FEC cannot correct always exist

Periodic Errors:

Every lost packet is corrected Behaviour of low error rates

Conclusion

Managed networks increase deterministic behaviours But IP-Networks are not ready for real-time broadcast quality!!! Nevertheless additional mechanism is necessary to prevent packet loss (e.g. FEC) IP tax: FEC increase bandwidth and delay Further improvement necessary

→ no guarantee for real-time video and audio!

18 June 2007 © IRT – SN Andreas Metz

Andreas Metz Dipl.-Ing. (FH) Broadcast Networks and Servers Institut für Rundfunktechnik Floriansmühlstraße 60 80939 München Germany Fon +49-89-32399-325 Fax +49-89-32399-354 E-Mail: metz@irt.de

Thank you for your attention l

This presentation is protected by copyright. Any reproduction needs prior permission by the author This copyright shall not be removed.

18 June 2007 © IRT – SN Andreas Metz