
Robert Engels
NRK

ORIGO

ORIGO enterprise architecture group
Project leader Metadatabank / Archive

robert.engels@nrk.no
+47-99544481

mailto:robert.engels@nrk.no

EBUCore
EBU CCDM

Semantic Web
Under the

hood

with a little help from Ivan Herman's intro course to the semantic web

RDF triples (cont.)

• An RDF Triple (s,p,o) is such that:

– “s”, “p” are URI-s, ie, resources on the Web; “o” is a URI or a
literal

• “s”, “p”, and “o” stand for “subject”, “property”, and “object”

– here is the complete triple:

• RDF is a general model for such triples (with machine
readable formats like RDF/XML, Turtle, N3, RXR, …)

(<http://…isbn…6682>, <http://…/original>, <http://…isbn…409X>)(<http://…isbn…6682>, <http://…/original>, <http://…isbn…409X>)

A simple RDF example (in
Turtle)

<http://…/isbn/2020386682>
 f:titre "Le palais des mirroirs"@fr ;
 f:original <http://…/isbn/000651409X> .

<http://…/isbn/2020386682>
 f:titre "Le palais des mirroirs"@fr ;
 f:original <http://…/isbn/000651409X> .

“Internal” nodes

• Consider the following statement:
– “the publisher is a «thing» that has a name and an address”

• nodes were identified with a URI. But…

• …what is the URI of «thing»?

• Use the concept of blank nodes
» but be carefull when merging

Need for RDF schemas

• We need “extra knowledge”, so let's:
– define the terms we can use
– what restrictions apply
– what extra relationships are there?

• This is where RDF Schemas come in
– officially: “RDF Vocabulary Description Language”; the term

“Schema” is retained for historical reasons…

Classes, resources in RDF(S)

• RDFS defines the meaning of these terms
• (these are all special URI-s, we just use the namespace

abbreviation)

The rough structure of data
integration

1.Map the various data onto an abstract data
representation

–make the data independent of its internal
representation…

2.Merge the resulting representations
3.Start querying on the whole!

–queries not possible on the individual data sets

A simplified bookstore data
(dataset “A”)

KEYFIELD: ID Author Title Publisher Year
ISBN0-00-651409-X The Glass Palace 2000id_xyz id_qpr

ID Name Home Page

ID City
Harpers Collins London

id_xyz Ghosh, Amitav http://www.amitavghosh.com

Publ. Name
id_qpr

1st: export your data as a set of relations

Another bookstore data (dataset
“F”)

A B C D E

1 ID Titre Auteur Original

2

ISBN0 2020386682 A7 A8 ISBN-0-00-651409-X

3
4
5

6

7

8

Traducteur
Le Palais
des
miroirs

Nom
Ghosh, Amitav
Besse, Christianne

2nd: export your second set of
data

3rd: start merging your data

3rd: start merging your data

3rd: merge identical resources

Start making queries…

• User of data “F” can now ask queries like:
– “give me the title of the original”

• This information is not in the dataset “F”…

• …but can be retrieved by merging with dataset “A”!

However, more can be
achieved…

• We “feel” that a:author and f:auteur should be the same

• But an automatic merge does not know that!

• Let us add some extra information to the merged data:
– a:author same as f:auteur

– both identify a “Person”
– a term that a community may have already defined:

• a “Person” is uniquely identified by his/her name and, say, homepage

• it can be used as a “category” for certain type of resources

3rd revisited: use the extra
knowledge

Start making richer queries!

•User of dataset “F” can now query:
–“give me the home page of the original’s author”
•The information is not in datasets “F” or “A”…

•…but was made available by:
–merging datasets “A” and datasets “F”

–adding three simple extra statements as an
extra “glue”

Merge with Wikipedia data

Merge with Wikipedia data

Merge with Wikipedia data

KEYWORD: SPARQL

SPARQL as a unifying point

Let's try it ourselves:
http://10.50.219.36:8890/sparql

Robert Engels
NRK

ORIGO

ORIGO enterprise architecture group
Project leader Metadatabank / Archive

robert.engels@nrk.no
+47-99544481

mailto:robert.engels@nrk.no

Radioarkivet API-er

Abstracted API (RA)

 REST/FULL
– JSON

– TTL/RDF(S)

SPARQL endepunkt

EBUCore
EBU CCDM

