

DIGITAL - Institute for Information and Communication Technologies

Content and Metadata Workflow for UGC in Live Production

Werner Bailer

EBU MDN Workshop, 7 June 2016

- Motivation & Context
- System overview
- Metadata capture, extraction and representation
- Demo
- Conclusion

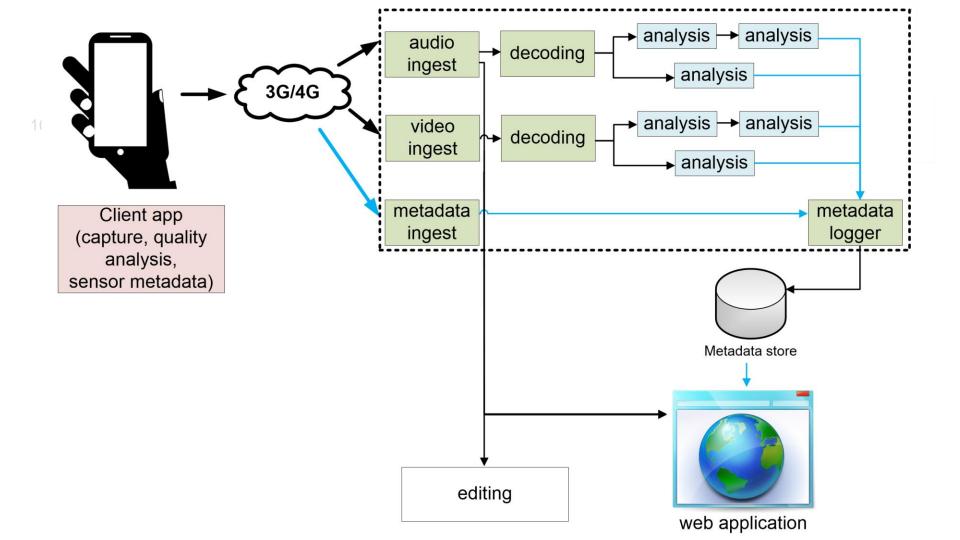
Motivation

- User generated content (UGC) can complement professional content
 - Unplanned/unexpected events
 - Additional views from events spreading large areas (festivals, sports events)
 - Better convey feeling of being in the crowd
 - Quality of capture devices is improving

- Live UGC is becoming available
 - Apps such as Meerkat, Periscope
 - Streams are provided to viewers "as is"
 - No integration with editing systems
 - Quality is sometimes questionable

- ICoSOLE: Immersive Coverage of Spatially Outspread Live Events
 - www.icosole.eu
 - **2013-2016**

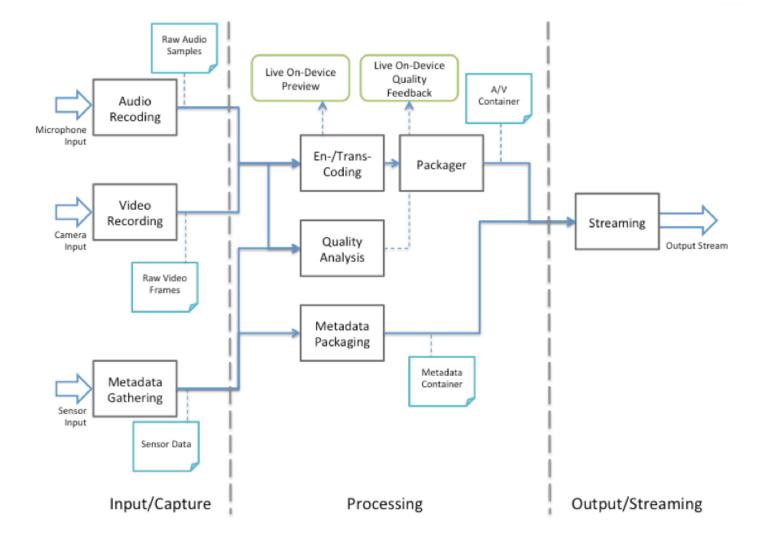
- Enable a more comprehensive and immersive experience of live events
 - both for on-site and remote media consumers
 - deliver content to broadcast, web, second screen and mobile
- Many events are spread over large areas
 - only high-profile events can be fully covered by professional capture
 - seamlessly integrate professional and user generated content

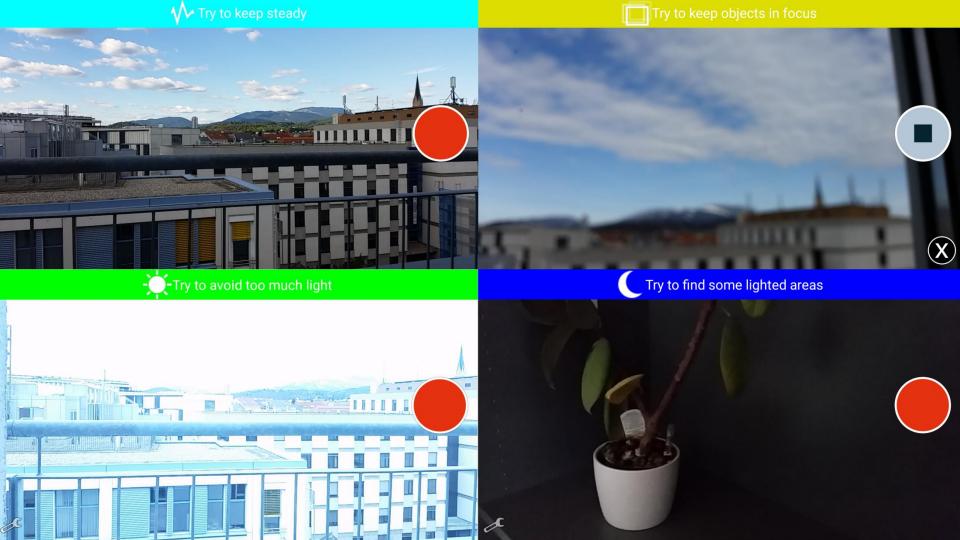


- Content capture
- Video content fusion
- Video content selection/filtering
- Professional production tools
- Content distribution
- Audio production/delivery/presentation

System overview

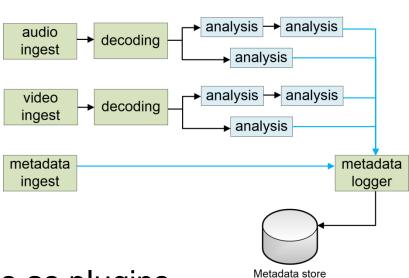
- Capture app for mobile devices
- Ingest and content analysis
- Metadata storage
- Visualisation and interfaces to editing, content management, ...


Video & audio streams


- using HW encoder of mobile device
- Sensors
 - location, accelerometer, gyroscope, magnetic field, orientation, rotation, ambient light, proximity and pressure
- Wrapping and streaming (RTP)
 - ISOBMFF container
 - streams for video, audio, metadata

Capture app

- Visual quality analysis on mobile device
 - low-complexity versions of algorithms
 - detect problems originating before encoding and transmission
 - noise, sharpness, over-/underexposure
- Analysis of sensor data
 - e.g., unsteadiness
- Provide feedback to user about quality issues
 - option to stop streaming if user does not react
- Send quality metadata to server



Backend system

- Receive, unwrap, decode
- Perform further metadata extraction (real-time)
- Implemented based on Gstreamer
 - wrapping analysis algorithms as plugins

Metadata extraction

- Quality analysis
 - more complex versions of quality analysis algorithms (sharpness, noise)
 for more precise results
 - macroblocking, (block) dropouts
 - audio QA: clipping (further modules under development)
 - determine overall quality score from individual metrics
- Visual similarity matching (work in progress)
 - match incoming stream against location images, other (professional) streams to determine overlap in view
 - visual similarity score for segments wrt. other streams

Synchronisation

- Backend server is synced with master clock (e.g. PTP)
- Synchronisation protocol to measure offset and network delay of mobile device
 - repeated on initialisation and during capture
 - measured times are sent with metadata stream
- Backend system corrects time stamps in stream headers
- Issues
 - high framerate jitter on mobile phones under full load occur
 - jitter in network delays

Metadata handling

- Metadata sources
 - static information from devices (type, capabilities, ...)
 - sensor data
 - extracted metadata (from mobile device and backend)
- Metadata is treated as a stream like a/v essence
 - sent as UDP packets between machines
 - any component can connect to the metadata stream
- Store time indexed metadata

Metadata representation

- Time-indexed packets
- JSON
 - compactness
 - easy integration in web applications
- Specified using JSON Schema
 - being aware of some issues [1]
 - following a more restricted syntax with conversion rules from/to XML schema [2]
- [1] http://dret.typepad.com/dretblog/2016/05/json-schema-why-and-how.html [2] http://www.xml.com/pub/a/2006/05/31/converting-between-xml-and-json.html

Metadata representation

- Representation of payload
 - JSON representation of existing specification (e.g. XML Schema)
 - MPEG-7 (e.g., persons, objects, regions)
 - EBU QC output model
 - EBU ADM

Metadata storage

- Indexing real-time metadata
 - Redis: fast, in memory database
 - store metadata for recent time window (typically hours)
 - older metadata is moved to relational DB (MySQL)
- Metadata store interface
 - querying for metadata by time, type, source, ... using a REST interface
 - transparent where data is stored (only response time is different)

Content filtering/selection

- Discard content below minimum quality requirements
- Create ranked list of available streams
 - overall quality score
 - uniqueness of location, tags, visual content
 - currently rule-based
 - ongoing work: learning from selection made by production team (includes e.g. preferences for trusted users)

Visualisation

- HTML5 based viewer
- query new metadata from store and update plots
 - includes sensor data, and metadata extracted on phone and in backend system
- video player
 - directly use RTP stream: lower latency, browser plugin required
 - serve as HTTP stream or via WebRTC: additional plugins doing conversions in Gstreamer chain needed

- Available streams can be provided to further components
 - live mixing, editing
 - content storage
- Discovery of streams via metadata store REST interface
- Easy integration for tools that can ingest RTP streams
 - possibly header extensions need to be inserted (device ID, timecode)
 - ongoing integration tests with BBC's IP Studio infrastructure, Tools On Air's mixing engine

Demo

- Capture and processing of live UGC
- Metadata chain collecting metadata generated/extracted at different stages
- Gstreamer-based backend system
- Interface to further production chain

Werner Bailer JOANNEUM RESEARCH – DIGITAL

werner.bailer@joanneum.at http://www.joanneum.at/en/digital

This work has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 610370, ICoSOLE.

