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The Thesis

“FIMS is not being adopted because:
programmers are ignorant and lazy”



  

Ignorant

● I'm certainly ignorant
– I didn't know about FIMS before I started here at the EBU

● My media background is in advertising, the internet and radio
– No TV post-production or distribution

– This is all new to me



  

Lazy

This looks like too much work to figure out



  

What this talk is about

● what we're doing in this area
● mapping some of our core concepts onto FIMS core concepts
● pain points & suggestions for making FIMS more accessible to 

developers



  

Who am I?

● Sean O'Halpin
● Senior Engineer in BBC R&D
● currently on secondment to the EBU
● working on investigating applications of IMF



  

What are we making?

● We are exploring applications of IMF
● We need a system to handle

– File transfer (to get content into our system)

– Transcoding (from broadcast formats to IMF)

– Transforms of IMF packages (e.g. adding 'subs and dubs')



  

A simple transcoding system

AWS
client EBU

BLOB xfer
agent

S3

Transcode

Job Control TranscodeBLOB xfer
agent

DAS SAN

BLOB xfer
agent



  

Differences from the FIMS domain

● This is a prototype of limited scope
● All package manipulations happen within the system

– So no need for external APIs

● File transfer is only for getting content into and out of the 
system
– It is not a user-level service as such



  

Basic use cases

● Import package
● Convert to IMF
● Import related assets
● Apply transformations to create a new package, e.g.

– add localized audio and subtitles

– skip scenes which are unacceptable to a local market

● Export package



  

Specific functions

● BLOB transfer
– Accelerated multi-part upload/download to/from S3

– And to a SAN here at the EBU

● Transcoding
– Using Windows-based transcoding software

– Would like to use cloud-based transcoding
● But transcoding to IMF not yet available



  

Implementation

● Elixir - highly concurrent language
– Erlang Online Telecom Platform (OTP)

● control / data bus separation
● command / event
● resource pools
● message queues



  

Our model

● Essence: content blobs (AV, subtitles, images, etc.) acted upon by the system
● Asset: metadata representing the business value of content
● Package: structured bundle of Assets treated as a unit
● Services

– Analyse: determine what kind of blob we're dealing with

– Validate: validate blob against schema

– Transfer: move blobs around

– Transcode: convert Essence from one format to another

– Transform: generate new assets and essences from existing ones

● Job: track work done on Assets by Services



  

Overlap with FIMS 1.2

● capture
● transfer
● transform



  

Our model compared to FIMS
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FIMS Job



  

Applications vs Services

● It appears we are using different definitions of 'service'
● In our system, the artefacts that get built and deployed are 

called 'applications'
● One or more applications together provide the 'services' offered 

to clients.
● This is slightly unfortunate as it clashes with an important IT 

industry definition of Service



  

ITIL Service Lifecycle

The Service Lifecycle is the central concept of the 5 volumes that 
define ITIL 3:

● Service Strategy
● Service Design
● Service Transition
● Service Operation
● Continual Service Improvement

http://itil.org/en/vomkennen/itil/ueberblick/index.php



  

ITIL definition of service

ITIL 3 defines 'service' as:
– “a means of delivering value to customers by facilitating outcomes 

customers want to achieve without the ownership of specific costs 
and risks”

http://wiki.en.it-processmaps.com/index.php/ITIL_Glossary/_ITIL_Terms_S#Service



  

FIMS Service = ITIL Application

The FIMS Service Lifecycle is similar to what ITIL calls the Application 
Management lifecycle

The shared aspects are highlighted in bold:
– Requirements

– Design

– Build

– Deploy

– Operate

– Optimize



  

Asset vs Business Media Object

● We think we're following common usage in the industry:

As asset is “[a]ny file which contains essence or metadata that is part of a 
composition. Examples include track files and composition playlist files.”[1]

● Everyone we speak to calls these blobs 'assets'
● BMObject is a confusing term simply because it is so vague

– Three generic words in a row

[1] http://www.cinecert.com/support/glossary/#a



  

The ugly

● The General Description document creates the unfortunate impression that FIMS is unfinished and 
incomplete
– even though the parts actually specified seem pretty complete to me

– too much talk about what FIMS will be in the future and not enough clarity on what FIMS is now

● ESB, SOA, SOAP
– Much XML. Very Java. Most programmers don't wash, let alone use SOAP!

● REST API seems like an afterthought
– and is presented as such

● BMObject (Business Media Object)
– The term is too vague – it needs more explanation in the docs

– Even the FIMS schema can't be bothered to write it out in full :)

● Service Lifecycle
– an idiosyncratic definition - not the ITIL Service Lifecycle or anyone else's



  

The bad

● It's not obvious where to find the documentation
● No clear overview of how you put together the elements defined in the schemas
● The General Description document assumes you already know FIMS

– e.g. it uses terms before defining them

● Very few examples (and only SOAP)
● The diagrams are confusing and not explained
● No structure and a lot of noise in the schema documentation

– what you expect from automatically generated docs

– OK as reference but unusable to learn from



  

The good

● It looks like we have similar ideas to FIMS about how to model this domain
– In particular, it's clear that separation of the control and data channels is key

● For the three core FIMs concepts I examined (Jobs, Services and BMObjects) we have 
close analogues in our system (Jobs, Applications and Assets), which bodes well for 
making those parts FIMS compliant
– There are differences in detail and approach, but nothing fundamental

● Studying FIMs has made me consider aspects of our system we hadn't fully thought 
about
– e.g. abstracting the Essence locator (bmEssenceLocator) is a good idea

● FIMS appears to me a very useful resource
– I just wish it were easier to learn



  

Conclusions

● Our 'naïve' analysis has come up with similar design elements to FIMS
– Though there is much more to FIMS than our system will cover

● This makes me more confident that we understand the domain reasonably 
well (as FIMS is clearly the result of a lot of thought)

● The main barrier to entry for developers is the lack of hand-holding 
resources for learning FIMS 
– It seems to me there's nothing fundamentally wrong with FIMS per se

● I found some of the terms chosen confusing at first but that is a minor quibble

– But from the lazy and ignorant programmer's point of view, it is demanding to learn



  

Suggestions for a more developer-friendly FIMS

In order of effort
– link to specification docs on fims.tv landing page

– proper web page for the docs

– have all documentation available in HTML on the web

– introduction to core concepts early in the docs

– a clear description of what FIMS is now without all the confusing future plans

– put the REST API up front and centre
● the SOAP fans are well-served by FIMS already
● FIMS needs to win the REST crowd



  

Suggestions (cont.)

– examples of actual use
● document samples don't tell you how they are used

– tutorials covering each of the major functional areas - Capture, 
Transfer and Transform

– better diagrams and more sequence diagrams showing the protocols 
at work

– a reference implementation

– a properly written specification - autodocs don't work on their own



  

Future possibilities?

● Will FIMS be extended to cover cloud-provided services?
– i.e. compute, storage, transcoding, etc.

– Creating vendor neutrality there would be difficult
● As you are fighting the vendor's attempts to lock you in

– But this may well be where FIMS could add most value
● And we will have a platform well-suited to explore that
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