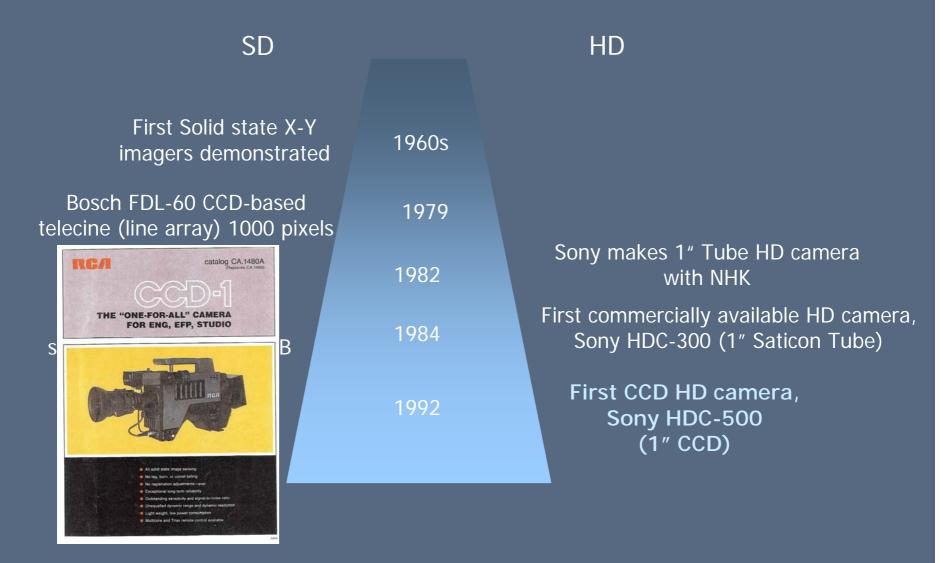
CCD Technology for HD Production

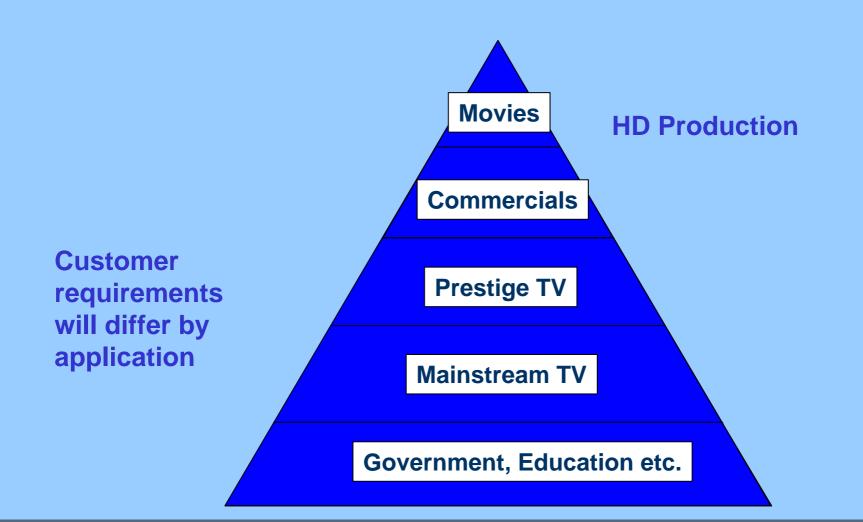
Ian Sheldon


Sony Professional Solutions Europe

November 2006

SONY Overview

- History
- HD camera market requirements
- CCD technology
- CCD Benefits
- HD technology in the production marketplace


SONY The road to HD CCD cameras

SONY HD Customer Requirements

- Low noise
- High sensitivity
- No smear/blooming/highlight overload effects
- High resolution
- Low aliasing
- Lens compatibility (=2/3" Image format)
- Low power consumption
- Support for multiple frame rates
- Low cost
- Ease of manufacture

SONY HD Applications

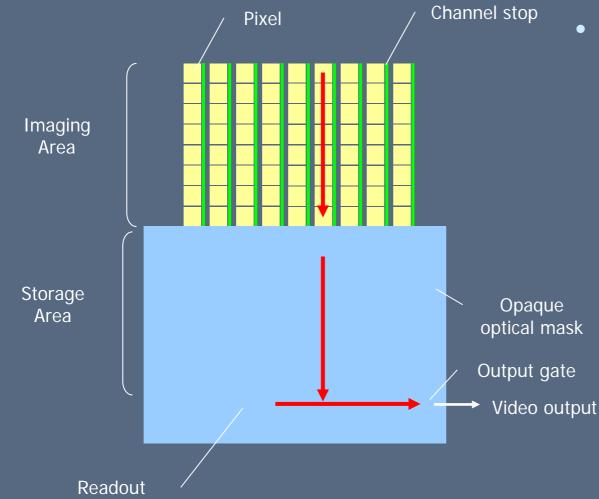
Imager technology

- CCD and CMOS
 - both use arrays of discrete pixels
 - both analogue devices
 - Both require A/D conversion process, usually external to the sensor

CMOS

- Individual charge-to-voltage convertors for every pixel
- Random access pixels can be read out in any sequence, as required
- Voltage readout
- *Possibility* for integrated sensor and image processing

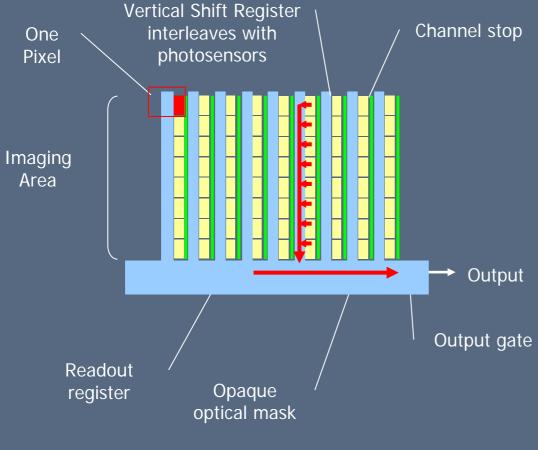
CCD


- Charge Coupled Device
 - Charge transfer through the device structure
- Single charge to voltage convertor at output
- Pixels addressed in predetermined sequence

Types of CCD sensor

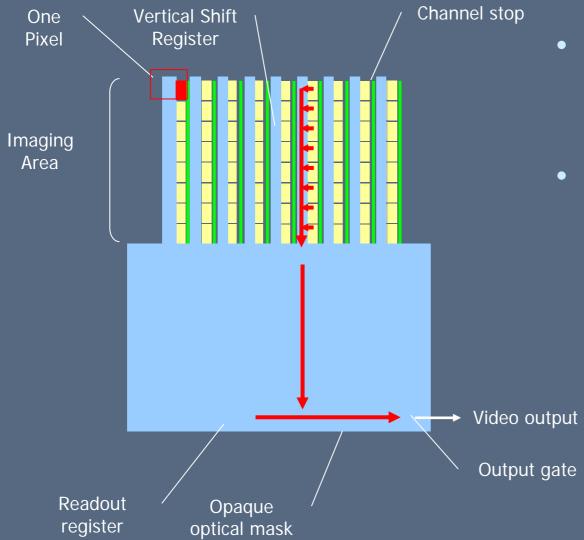
- FT (Frame Transfer)
- IT (Interline Transfer)
- FIT (Frame Interline Transfer)

SONY Frame Transfer (FT)


register

• Disadvantage:

- requires
 optomechanical
 shutter
- large physical size
- pixels have to act as shift register
- Rapid transfer to storage area is required


SONY Interline Transfer (IT)

Advantages

- smaller physical size
- Lower manufacturing cost
- dedicated shift register
- Disadvantage:
 - smaller photosensitive area
 - possibility for light and/or charge to leak sideways into shift register to cause vertical smear

SONY Frame Interline Transfer (FIT)

Advantages

- Separate storage area, immune to highlight effects
- Disadvantage:
 - large physical size
 - Complex structure

SONY CCD development

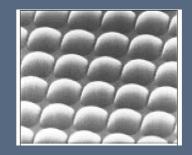
- In concept, CCD is unchanged since the mid 1980s
- In practice, there have been numerous refinements in the technology, and manufacturing process, leading to major user benefits

Factors to be considered

- Noise
- Sensitivity
- Dynamic range
- Highlight artefacts
- Resolution
- Aliasing
- Dark current
- Lag
- Shading/uniformity
 - Black and white

- Spectral Response
- Colour fidelity
- Flare
- Readout speed
- Power consumption
 - Smaller technology
 - Reduced supply voltage
- "Dead" pixels

SONY Noise in CCD Sensors

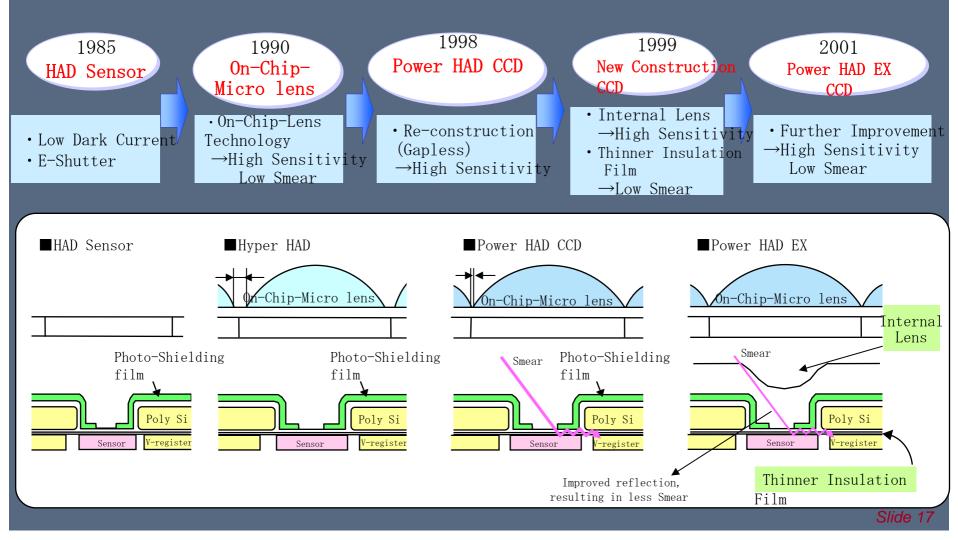

- Many factors influence noise
 - Thermal noise, reset noise, 1/f noise
 - Optical shot noise
 - Fixed pattern noise
 - Caused by non uniformity of sensitivity and dark current
- Design improvements
 - Hole Accumulation Layer
 - Heavily doped layer at the surface of the sensor, used to minimise noise caused by impurities at the surface
 - Also eliminates lag due to poor readout efficiency
 - Correlated Double Sampling (CDS) readout amplifiers
 - Floating Diffusion Amplifier (FDA)

SONY Dark Current

- *Dark current* is signal output from the sensor when no light reaches it
- Early sensors suffered badly from this effect
- Strongly temperature dependent
- Leads to shading and other effects
- Can be compensated by sensing output from extra (optically shielded) pixels.
- HAD sensor dramatically reduced this phenomenon.

SONY Sensitivity of CCD Sensors

- Increased pixel counts leads to smaller pixels, and hence lower sensitivity
- Countered by:
 - better optical conversion efficiency
 - Micro Lenses
 - Individual lenses located above each pixel


 Note that different applications have differing sensitivity requirements

Highlight handling of CCD Sensors

- Vertical smear
- Highlight blooming
- Highlight lag
 - Have all been limitations of CCD devices
 - Smaller pixel sizes for HD can lead to reduced overload margin
 - FT sensors can also suffer from highlight artefacts
- Improvements in internal sensor structure has eliminated most causes of highlight problems

 FIT technology has become redundant

SONY Sony Power HAD EX CCD Technology Improvements

Power consumption

DNY

- Improvements in semiconductor technology have allowed the use of ever smaller cell geometry
- Smaller geometry can use lower operating voltage, hence lower power consumption
- Lower power leads to additional benefit with lower noise level
 - But increased pixel numbers
 - = higher clock frequencies
 - = <u>increased</u> power!

SONY Resolution and aliasing

- CCD resolution has risen to the point where in most circumstances it is the lens rather than the sensor which determines overall performance
- To minimise aliasing, good optical low pass filtering is required
 - Typically 3 dimensional LPF
- OLPF structure related to pixel size
 - Not possible with sensors which use variable pixel geometry

SONY Shading and Uniformity

- Early CCD sensors had very poor uniformity, leading to noticeable picture degradation at low video levels
 - "dirty window" effect
- Largely eliminated on modern CCDs
- Potentially a bigger problem on CMOS devices, due to individual pixel amplifiers.
- Can be compensated using stored noise cancelling pattern, but introduces additional processing delay.

Spectral Response and Colour fidelity

- Early CCD sensors had poor blue sensitivity
 - early sensors used rear illumination of the sensor, which gave <u>very</u> low blue sensitivity
- Early CCD sensors had heavy infra-red filtering
 - Partially to reduce vertical smear due to deep electron generation
 - Partially to match plumbicon tube characteristics
- Modern devices have very wide spectral response

SONY Quality Control

- Any manufacturing process is subject to a certain level of failures
- What is an acceptable level?
 - 1%?
 - 0.1%
 - 0.000045%
 - That would represent one pixel failure on an HD CCD sensor!
 - In Sony broadcast CCD sensors, even this level is not acceptable

SONY Pixel Errors

- Pixels can have other failure modes, which result in a white spot (at black level) or dark spot (at white level)
- Not unique to any one type of sensor
- Pixel is still fully functional
 - Sony terminology is Residual Point Noise (RPN)
- Can be managed by compensation and concealment techniques
- These can be fully automatic and require no user intervention
- Undetectable in operation
- Provides effective field "repair"

SONY HD CCD Technology today

- CCD devices have a long and successful history
- Well proven, mature technology
- Main performance limitations have been identified and eliminated or minimised
- Provide very satisfactory, reliable and stable operation

SONY HD CCD Technology today

- Low noise
 - Fundamental technology improvements
- High sensitivity
 - Not quite at SD camera levels, but close
- Wide dynamic range/highlight handling
 - As good, or better than SD
- High clock rates, at reasonable power level
 - Frame rates up to 1080p/50
- Aliasing
 - Well controlled
- Shading
 - Negligible

SONY CCD - CMOS Comparison

	CCD	CMOS
Sensitivity	Excellent	Good
	Efficiency of O-E conversion	Efficiency of AMP gain
S/N	Excellent	Poor
	FD AMP	Performance of Transistor
Dark Current	Excellent	Good
	Exclusive Process	CMOS LSI Process
Smear	Good	No Smear
	Fundamental Phenomenon	Can be ignored
D-Range	Good	Good
		Depending on pixel no.
Power Consumption	Good	Excellent

SONY CMOS Benefits

- High speed
- Random access (scan invert, variable readout size
- No smear
- Low power
- Potential for integration with processing

SONY The future

- CMOS technology now starting to reach maturity
- Already in use for HD
 - Consumer
 - High-end
- Has benefits if higher resolution and/or higher frame rates are required
- Probably inevitable that it will spread to other applications
 - But the industry has more than 20 years experience with CCD technology, that will not be easily replaced

SONY HD in the real world

 Over 2000 units of Sony HD studio and OB cameras are in use world wide

HDCAM

- Over 5000 units of Sony HDCAM camcorders are in use worldwide
- And now,

- Since the beginning of 2005, more than 15000 units (consumer and professional) have been sold.
- HD for Everyone