
EBU – TECH 3306

MBWF / RF64:
An extended File Format

for Audio

A BWF-compatible multichannel file format
enabling file sizes to exceed 4 Gbyte

Status: Technical Specification

Geneva
July 2009

EBU Tech 3306-2009 MBWF / RF64: An Extended File Format for Audio

3

Contents

1. INTRODUCTION ... 5

2. BASIC USER REQUIREMENTS ... 5

3. DEFINITION OF A NEW FORMAT, RF64 ... 6

3.1 Enhancement for a PCM stereo down mix ..6

3.2 Enhancement for control data..7

3.3 Enhancement for bitstream non-PCM data ...7

3.4 Breaking the 4 gigabyte barrier ..7

3.5 Achieving compatibility between BWF and RF64 ..9

3.6 Definition of a marker chunk ... 10

Annex A:Formal description of RIFF/WAVE and RF64/WAVE structures 12

A.1 Chunks and Structs in the RIFF/WAVE (BWF) format.. 12

A.2 New Chunks and Structs in the RF64/WAVE (MBWF) format 13

A.3 Existing Cue Point Chunks ... 14

A.4 New Marker Chunk and Structs in the RF64/WAVE (MBWF) format 15

REFERENCES:.. 17

MBWF / RF64: An Extended File Format for Audio EBU Tech 3306-2009

4

 Page intentionally left blank. This document is paginated for recto-verso printing

EBU Tech 3306-2009 MBWF / RF64: An Extended File Format for Audio

5

MBWF / RF64: An Extended File Format for Audio

EBU Committee First Issued Revised Re-issued

PMC 2006 2006, 2008, July 2009

Keywords: RF64, BWF, MBWF, Multichannel Audio File

1. INTRODUCTION
The RF64 file format should fulfil the longer-term need for multichannel sound in broadcasting
and archiving. The required effort for software implementers is very small. The changes that will
be needed to update existing systems will be reasonable in cost.

An RF64 file has additions to the basic Microsoft RIFF/WAVE specification to allow for either, or
both:

• more than 4 Gbyte file sizes when needed

• A maximum of 18 surround channels, stereo downmix channel and bitstream signals with
non-PCM coded data. This specification is based on the Microsoft Wave Format
Extensible [1] for multichannel parameters.

The file format is designed to be a compatible extension to the Microsoft RIFF/WAVE format and
to the BWF [2] [3] and its supplements and additional chunks. It extends the maximum size
capabilities of the RIFF/WAVE and BWF thus allowing for multichannel sound in broadcasting and
audio archiving.

RF64 can be used in the entire programme chain from capture to editing and play out and for
short or long term archiving of multichannel files.

An RF64 file with a bext chunk becomes an MBWF (Multichannel BWF) file. The terms ‘RF64’ and
‘MBWF’ can then be considered synonymous.

2. BASIC USER REQUIREMENTS
The basic user requirements were derived from discussions with a group of EBU Members. They
are summarised below:

• The file format should have an open, published specification
• Backwards compatibility to BWF and RIFF/WAVE must be maintained
• Linear PCM must be accommodated
• File sizes more than 4 Gbyte must be accommodated
• Minimum 8 channels (5.1 + stereo) must be accommodated
• Simulcast (5.1 + stereo in a single file) should be possible
• Streaming should be possible
• Editing should be possible
• A browsing version should be derivable directly from the file
• Must contain the technical Metadata necessary for play-back (e.g. Dolby Metadata)
• A low cost, easily accessible software player should be available
• Easy implementation for software developers and manufacturers.

MBWF / RF64: An Extended File Format for Audio EBU Tech 3306-2009

6

Additionally, Swedish operational experience has demonstrated that production and archiving
often require storing and transport of PCM and non-PCM audio data, both or either in a single
file. Consequently, mechanisms for accommodating non-PCM audio streams (e.g. Dolby Digital
and DTS) have been added to the RF64 format.

3. DEFINITION OF A NEW FORMAT, RF64
With the advent of Windows 2000 Microsoft introduced the multichannel extension to its
RIFF/WAVE file format, called Wave Format Extensible. The main purpose of this file format was
to support multichannel audio in PC gaming applications.

The Wave Format Extensible channel mask contains 18 “#define” settings specifying different
loudspeaker positions (or channel allocations). Another “#define”, “SPEAKER_ALL” turns on all
loudspeakers (channels).

Microsoft Wave Format Extensible Channel Mask

#define SPEAKER_FRONT_LEFT 0x00000001

#define SPEAKER_FRONT_RIGHT 0x00000002

#define SPEAKER_FRONT_CENTER 0x00000004

#define SPEAKER_LOW_FREQUENCY 0x00000008

#define SPEAKER_BACK_LEFT 0x00000010

#define SPEAKER_BACK_RIGHT 0x00000020

#define SPEAKER_FRONT_LEFT_OF_CENTER 0x00000040

#define SPEAKER_FRONT_RIGHT_OF_CENTER 0x00000080

#define SPEAKER_BACK_CENTER 0x00000100

#define SPEAKER_SIDE_LEFT 0x00000200

#define SPEAKER_SIDE_RIGHT 0x00000400

#define SPEAKER_TOP_CENTER 0x00000800

#define SPEAKER_TOP_FRONT_LEFT 0x00001000

#define SPEAKER_TOP_FRONT_CENTER 0x00002000

#define SPEAKER_TOP_FRONT_RIGHT 0x00004000

#define SPEAKER_TOP_BACK_LEFT 0x00008000

#define SPEAKER_TOP_BACK_CENTER 0x00010000

#define SPEAKER_TOP_BACK_RIGHT 0x00020000

#define SPEAKER_ALL 0x80000000

To fulfil the user requirements listed above, RF64 requires some enhancements to the basic
Wave Format Extensible channel mask. Fortunately this is stored in a 32-bit variable that can
therefore accommodate a further 13 “#defines” to allow this increased functionality.

3.1 Enhancement for a PCM stereo down mix
No PCM stereo signal is included in the basic Wave Format Extensible.

To include a stereo channel the following is added:

#define SPEAKER_STEREO_LEFT 0x20000000

#define SPEAKER_STEREO_RIGHT 0x40000000

EBU Tech 3306-2009 MBWF / RF64: An Extended File Format for Audio

7

With this enhancement, a multichannel ‘X.1’ and a stereo down mix can be accommodated in a
single file.

3.2 Enhancement for control data
Addition of two new “#define” values for control data:

#define SPEAKER_CONTROLSAMPLE_1 0x08000000

#define SPEAKER_CONTROLSAMPLE_2 0x10000000

These control samples can be stored within the file. Technical or content metadata can be
positioned with sample accuracy along the essence file time line. The details of this feature are
yet to be defined.

3.3 Enhancement for bitstream non-PCM data
Bitstream signals according to IEC [4] and SMPTE [5] standards carry non-PCM multichannel audio
data coded with various perceptual methods.

Through this bitstream storage feature in the file format, Dolby AC3, Dolby E, DTS, MPEG-1 and
 2 (at all three layers) and MPEG-2 AAC will be contained in the file as data bursts, “disguised”
as PCM linear. The bitstream audio signal is embedded in a structure that is similar to two
interleaved stereo audio channels in a linear PCM RIFF/WAVE or BWF file.

In RIFF files there is only one format chunk defining common parameters for all interleaved
channels in the audio data chunk. The format of the bitstream channels must comply with the
format of other multichannel PCM or stereo PCM channels if they are present in the same file.

To a receiver of the file, the type of non-PCM audio coding will be known only when the
bitstream is decoded from AES3 or SPDIF. It is likely that a new chunk will be developed to signal
the bitstream format contained in the file.

Adding 4 more “#define” values to the Wave Format Extensible channel mask will allow two
different non-PCM formats, as follows:

#define SPEAKER_BITSTREAM_1_LEFT 0x00800000

#define SPEAKER_BITSTREAM_1_RIGHT 0x01000000

#define SPEAKER_BITSTREAM_2_LEFT 0x02000000

#define SPEAKER_BITSTREAM_2_RIGHT 0x04000000

3.4 Breaking the 4 gigabyte barrier
The reason for the 4 Gbyte barrier is the 32-bit addressing in RIFF/WAVE and BWF. With 32 bits a
maximum of 4294967296 bytes = 4 Gbyte can be addressed. To solve this issue, 64-bit addressing
is needed.

MBWF / RF64: An Extended File Format for Audio EBU Tech 3306-2009

8

Just changing the size of every field in a BWF to 64-bit would produce a file that is not
compatible with the standard RIFF/WAVE format - an obvious but important observation.

The approach adopted is to define a new 64-bit based Resource Interchange File Format called
RF64 that is identical to the original RIFF/WAVE format, except for the following changes:

• The ID ‘RF64’ is used instead of ‘RIFF’ in the first four bytes of the file

• A mandatory ‘ds64’ (data size 64) chunk is added, which has to be the first chunk after
the “RF64 chunk”.

The ‘ds64’ chunk has three mandatory 64-bit integer values, which replace three 32-bit
fields of the RIFF/WAVE format:

◦ riffSize (replaces the RIFF size field)

◦ dataSize (replaces the size field of the ‘data’ chunk)

◦ sampleCount (replaces the sample count value in the ‘fact’ chunk)

For all three 32-bit fields of the RIFF/WAVE format the following rule applies:

If the 32-bit value in the field is not “-1” (= FFFFFFFF hex) then this 32-bit value is used.
If the 32-bit value in the field is “-1” the 64-bit value in the ‘ds64’ chunk is used instead.

• One optional array of structs2 (see Annex A) with additional 64-bit chunk sizes is possible

The complete structure of the RF64 file format is illustrated in the following figure:

2 “Struct” is a C/C++ keyword that defines a structure type and/or a variable of a structure type.

EBU Tech 3306-2009 MBWF / RF64: An Extended File Format for Audio

9

3.5 Achieving compatibility between BWF and RF64
In spite of higher sampling frequencies and multi-channel audio, some production audio files will
inevitably be smaller than 4 Gbyte and they should therefore stay in Broadcast Wave Format.

The problem arises that a recording application cannot know in advance whether the recorded
audio it is compiling will exceed 4 Gbyte or not at end of recording (i.e. whether it needs to use
RF64 or not).

The solution is to enable the recording application to switch from BWF to RF64 on the fly at the
4 Gbyte size-limit, while the recording is still going on.

This is achieved by reserving additional space in the BWF by inserting a ‘JUNK’ chunk 3 that is of
the same size as a ‘ds64’ chunk. This reserved space has no meaning for Broadcast Wave, but
will become the ‘ds64’ chunk, if a transition to RF64 is necessary.

3 The ‘JUNK’ chunk is part of the original RIFF/WAVE standard. It is a placeholder and it will be ignored by any audio
application.

MBWF / RF64: An Extended File Format for Audio EBU Tech 3306-2009

10

At the beginning of a recording, a RF64-aware application will create a standard RIFF/WAVE or
BWF with a ’JUNK’ chunk as the first chunk. While recording, it will check the RIFF and data
sizes. If they exceed 4 Gbyte, the application will:

• Replace the chunkID ‘JUNK’ with ‘ds64’ chunk. (this transforms the previous JUNK chunk
into a ds64 chunk).

• Insert the RIFF size, 'data' chunk size and sample count in the 'ds64' chunk

• Set RIFF size, 'data' chunk size and sample count in the 32 bit fields to -1 = FFFFFFFF hex

• Replaces the ID ‘RIFF’ with ‘RF64’ in the first four bytes of the file

• Continue with the recording.

3.6 Definition of a marker chunk
Several issues have been observed with the cue chunk as it was originally specified in earlier
versions of this standard. Notably:

• The existing cue chunk is functional only for the first (lowest) 4 Gbyte of audio data in an
RF64 file, because the legacy cue chunk uses 32 bit addressing.

• Experience has shown that the definition of the RIFF/WAVE cue chunk has been
interpreted ambiguously, giving rise to some developers implementing marker
functionality in an improper way in their applications.

• Software developers have to handle markers differently, depending on whether linear or
compressed audio is the payload, which adversely affects simplicity and accuracy of the
resulting code.

• Labels are not stored in the cue chunk, but in a different, label chunk, which is an
unnecessary complication.

For these reasons, a new RF64 marker chunk is defined (see § A3 and § A4 of the Annex).

The marker chunk contains both the marker’s position and its label.

EBU Tech 3306-2009 MBWF / RF64: An Extended File Format for Audio

11

As RF64 audio files are large (typically larger than 4 Gbyte) it is good practice to be able to
delete markers without the necessity of re-rendering the complete file. This is achieved by
introducing the possibility of validating/invalidating a marker by setting/resetting a bit in a flags
field.

This technique makes it possible to reserve space for a number of markers before commencing
writing the data chunk. In this way markers can be written to the file while recording and
writing audio data to the growing data chunk.

Statistics show that the majority of marker labels are just a few characters in length. It has
therefore been decided to specify a fixed length label field. The overhead that this introduces in
a typical RF64 audio file in excess of 4 Gbyte is minimal. For example, the space occupied by
3000 typical markers would be less than 1 Mbyte, or in an RF64 file of 4 Gbyte, 10000 markers
would account for an overhead of <0.1% of the file size.

Lastly, a vendor and/or product-specific data field enables the addition of special features to
dedicated markers specifying things such as colour. As this is a highly vendor-specific feature, a
GUID (globally unique identifier) ensures that only the vendor’s application makes use of this
information. All other software will ignore the data. Furthermore, as this information is
important only within a specific application, it is not necessary to share this information with
other vendors’ applications. Each vendor can utilise this data in its own manner.

NOTE: As it is possible for a RIFF/WAVE or RF64 file to contain both a cue chunk and an RF64
marker chunk, it is mandatory that an application first looks for an RF64 marker chunk. If this is
found in the file, it only is used for marker information (cue points). If no RF64 marker chunk is
found in the file, the application looks for and uses the cue chunk.

MBWF / RF64: An Extended File Format for Audio EBU Tech 3306-2009

12

Annex A: Formal description of RIFF/WAVE and RF64/WAVE structures

A.1 Chunks and Structs in the RIFF/WAVE (BWF) format

struct RiffChunk // declare RiffChunk structure

{

char chunkId[4]; // ‘RIFF’

unsigned int32 chunkSize; // 4 byte size of the traditional RIFF/WAVE file

char riffType[4]; // ‘WAVE’

};

struct JunkChunk // declare JunkChunk structure

{

char chunkId[4]; // ‘JUNK’

unsigned int32 chunkSize; // 4 byte size of the ‘JUNK’ chunk. This must be at

// least 28 if the chunk is intended as a

// place-holder for a ‘ds64’ chunk.

char chunkData[]4; // dummy bytes

};

struct FormatChunk5 // declare FormatChunk structure

{

char chunkId[4]; // ‘fmt ’

unsigned int32 chunkSize; // 4 byte size of the ‘fmt ’ chunk

unsigned int16 formatType; // WAVE_FORMAT_PCM = 0x0001, etc.

unsigned int16 channelCount; // 1 = mono, 2 = stereo, etc.

unsigned int32 sampleRate; // 32000, 44100, 48000, etc.

unsigned int32 bytesPerSecond; // only important for compressed formats

unsigned int16 blockAlignment; // container size (in bytes) of one set of samples

unsigned int16 bitsPerSample; // valid bits per sample 16, 20 or 24

unsigned int16 cbSize // extra information (after cbSize) to store

char extraData[22] // extra data of WAVE_FORMAT_EXTENSIBLE when
necessary

};

struct DataChunk // declare DataChunk structure

{

char chunkId[4]; // ‘data’

unsigned int32 chunkSize; // 4 byte size of the ‘data’ chunk

char waveData[] // audio samples

};

4 The empty bracket is not standard C/C++ syntax. It is used to show that these arrays have a variable number of
elements (which might even be zero).

5 This is already the specialised format chunk for PCM audio data.

EBU Tech 3306-2009 MBWF / RF64: An Extended File Format for Audio

13

Note: Any other chunks that are valid in a RIFF/WAVE file are also valid in a
RF64/WAVE file. For example, the BWF extensions for RIFF/WAVE can be used
“as is” in any RF64/WAVE file.

A.2 New Chunks and Structs in the RF64/WAVE (MBWF) format

struct RF64Chunk // declare RF64Chunk structure

{

char chunkId[4]; // ‘RF64’

unsigned int32 chunkSize; // -1 = 0xFFFFFFFF means don’t use this data, use

// riffSizeHigh and riffSizeLow in ‘ds64’ chunk instead

char rf64Type[4]; // ‘WAVE’

};

struct ChunkSize64 // declare ChunkSize64 structure

{

char chunkId[4]; // chunk ID (i.e. “big1” – this chunk is a big one)

unsigned int32 chunkSizeLow; // low 4 byte chunk size

unsigned int32 chunkSizeHigh; // high 4 byte chunk size

};

struct DataSize64Chunk // declare DataSize64Chunk structure

{

char chunkId[4]; // ‘ds64’

unsigned int32 chunkSize; // 4 byte size of the ‘ds64’ chunk

unsigned int32 riffSizeLow; // low 4 byte size of RF64 block

unsigned int32 riffSizeHigh; // high 4 byte size of RF64 block

unsigned int32 dataSizeLow; // low 4 byte size of data chunk

unsigned int32 dataSizeHigh; // high 4 byte size of data chunk

unsigned int32 sampleCountLow; // low 4 byte sample count of fact chunk

unsigned int32 sampleCountHigh; // high 4 byte sample count of fact chunk

unsigned int32 tableLength; // number of valid entries in array “table”

chunkSize64 table[];

};

The array of “ChunkSize64” structs is used to store the length of any chunk other than ‘data’ in
the optional part of the ‘ds64’ chunk. Currently, no standard chunk type other than ‘data’ is
likely to exceed a size of 4 Gbyte even in extremely large audio files (e.g. the BWF ‘levl’ chunk
will typically exceed 4 Gbyte only when the ‘data’ chunk reaches about 512 Gbyte).

MBWF / RF64: An Extended File Format for Audio EBU Tech 3306-2009

14

struct Guid

{

unsigned int32 data1;

unsigned int16 data2;

unsigned int16 data3;

unsigned int32 data4;

unsigned int32 data5;

};

struct FormatExtensibleChunk // declare FormatExtensibleChunk structure for

// WAVE_FORMAT_EXTENSIBLE

{

char chunkId[4]; // ‘fmt ’

unsigned int32 chunkSize; // 4 byte size of the ‘fmt ’ chunk

unsigned int16 formatType; // WAVE_FORMAT_EXTENSIBLE = 0xFFFE

unsigned int16 channelCount; // 1 = mono, 2 = stereo, etc.

unsigned int32 sampleRate; // 32000, 44100, 48000, etc.

unsigned int32 bytesPerSecond; // only important for compressed formats

unsigned int16 blockAlignment; // container size (in bytes) of one set of samples

unsigned int16 bitsPerSample; // bits per sample in container size * 8, i.e. 8, 16, 24

unsigned int16 cbSize // extra information (after cbSize) to store

unsigned int16 validBitsPerSample // valid bits per sample i.e. 8, 16, 20, 24

unsigned int32 channelMask // channel mask for channel allocation

Guid subFormat // KSDATAFORMAT_SUBTYPE_PCM

// data1 = 0x00000001

// data2 = 0x0000

// data3 = 0x0010

// data4 = 0xAA000080

// data5 = 0x719B3800

};

A.3 Existing Cue Point Chunks

struct CuePoint // declare CuePoint structure

{

unsigned int32 identifier; // unique identifier for the cue point

unsigned int32 position; // position of the cue point in the play order

char dataChunkId[4]; // normally ‘data’

unsigned int32 chunkStart; // used for wave lists

unsigned int32 blockStart; // Start of compressed data block containing the cue point
// (not used for PCM)

unsigned int32 sampleOffset; // sample offset of cue point (absolute for PCM,
// relative to block start for compressed data)

};

struct CueChunk // declare CueChunk structure

{

char chunkId[4]; // ‘cue ’

EBU Tech 3306-2009 MBWF / RF64: An Extended File Format for Audio

15

unsigned int32 chunkSize; // 4 byte size of the ‘cue ’ chunk

unsigned int32 cuePointCount; // number of cue points (markers)

CuePoint cuePoints[]6; // cue points
};

struct ListChunk // declare ListChunk structure

{

char chunkId[4]; // ‘list’

unsigned int32 chunkSize; // 4 byte size of the ‘list’ chunk

char typeId[4]; // ‘adtl’ associated data list

};

struct LabelChunk // declare LabelChunk structure

{

char chunkId[4]; // ‘labl’

unsigned int32 chunkSize; // 4 byte size of the ‘labl’ chunk

unsigned int32 identifier; // unique identifier for the cue point

char text[]; // label text: null terminated string (ANSI)

};

A.4 New Marker Chunk and Structs in the RF64/WAVE (MBWF) format

struct MarkerEntry // declare MarkerEntry structure

{

unsigned int32 flags; // flags field

unsigned int32 sampleOffsetLow; // low 4 byte marker’s offset in samples in data chunk

unsigned int32 sampleOffsetHigh; // high 4 byte marker’s offset

unsigned int32 byteOffsetLow; // low and high 4 byte of the beginning of the nearest

unsigned int32 byteOffsetHigh; // compressed frame next to marker (timely before)

unsigned int32 intraSmplOffsetHigh; // low and high 4 byte of marker’s offset in samples

unsigned int32 intraSmplOffsetLow; // relative to the position of the first sample in frame

char labelText[256]7; // null terminated label string

unsigned int32 lablChunkIdentifier; // link to ‘labl’ subchunk of ‘list’ chunk8

Guid vendorAndProduct; // GUID identifying specific vendor application

unsigned int32 userData1; // 4 byte application specific user data

unsigned int32 userData2; // 4 byte application specific user data

unsigned int32 userData3; // 4 byte application specific user data

unsigned int32 userData4; // 4 byte application specific user data

};

6 The empty bracket is not standard C/C++ syntax. It is used to show that these arrays have a variable number of
elements (which might even be zero).

7 Depending on flags field the string is coded in ANSI or UTF-8.

8 Same as ‘identifier’ field in legacy ‘cue’ chunk’s cue point entry.

MBWF / RF64: An Extended File Format for Audio EBU Tech 3306-2009

16

struct MarkerChunk // declare MarkerChunk structure

{

char chunkId[4]; // ‘r64m’

unsigned int32 chunkSize9; // 4 byte size of the ‘r64m’ chunk

MarkerEntry markers[]; // marker entries

};

Definition of the flags field
The flags field defines different features of the chunk and validity of fields in the struct.

Bit 0 0 entry is invalid (skip entry)

1 entry is valid

Bit 1 0 byteOffset is invalid (do not use)

1 byteOffset is valid

Bit 2 0 intraSmplOffset is invalid (do not use)

1 intraSmplOffset is valid

Bit 3 0 labelText is holding marker’s label string (if label string is empty, marker has no label)

1 marker’s label is stored in ‘labl’ chunk; use lablChunkIdentifier to retrieve

Bit 4 0 labelText string is ANSI

1 labelText string is UTF-8

9 The chunk size has to be a multiple of the size of MarkerEntry (320 bytes).

EBU Tech 3306-2009 MBWF / RF64: An Extended File Format for Audio

17

REFERENCES:

[1] Wave Format Extensible: Multiple Channel Audio Data and WAVE Files

[2] EBU Tech 3285 Specification of the Broadcast Wave Format (BWF) - Version 1 - first
edition

[3] EBU Tech 3285 s 1 - 5 Supplements to the BWF specification

IEC 61937-1 Digital audio - Interface for non-linear PCM encoded audio bitstream
applying IEC 60958 (AES3, SPDIF) - Part 1: General

IEC 61937-3 Part 3: Non-linear PCM bitstreams according to the AC-3 format

IEC 61937-5 Part 5: Non-linear PCM bitstreams according to the DTS format(s)

[4]

IEC 61937-6 Part 6: Non-linear PCM bitstreams according to the MPEG2 AAC audio
formats

SMPTE 337M-2000 Format for Non-PCM Audio and Data in an AES3 Serial Digital Audio
Interface

SMPTE 338M-2000 Format for Non-PCM Audio and Data in AES3 – Data Types
(Supported data types: AC-3, MPEG-1 or MPEG-2, Layer 1, 2 or 3, SMPTE
KLV data and Dolby E).

SMPTE 339M-2000 Format for Non-PCM Audio and Data in AES3 – Generic Data Types

[5]

SMPTE 340M Format for Non-PCM Audio and Data in AES3 – ATSC A/52 (AC-3) Data Type

Wave Format extensible is explained at: www.microsoft.com/whdc/device/audio/multichaud.mspx

EBU standards are available for free download from: www.ebu.ch/en/technical/publications/index.php

IEC- standards can be purchased via: www.iec.ch/searchpub/cur_fut.htm

SMPTE-standards can be purchased via: www.smpte.org/smpte_store/standards/

