
EBU – TECH 3306-2007

RF64:
An extended File Format

for Audio

A BWF-compatible multichannel file format
enabling file sizes to exceed 4 Gbyte

Status: Technical Specification

Geneva
February 2007

EBU Tech 3306-2007 RF64: An Extended File Format for Audio

3

Contents

1. INTRODUCTION 5

2. BASIC USER REQUIREMENTS 5

3. DEFINITION OF A NEW FORMAT, RF64 6

3.1 Enhancement for a PCM stereo down mix 6
3.2 Enhancement for control data 7
3.3 Enhancement for bitstream non-PCM data 7
3.4 Breaking the 4 gigabyte barrier 7
3.5 Achieving compatibility between BWF and RF64 9

ANNEX A:FORMAL DESCRIPTION OF RIFF/WAVE AND RF64/WAVE STRUCTURES 11

A.1 Chunks and Structs in the RIFF/WAVE (BWF) format 11
A.2 New Chunks and Structs in the RF64/WAVE (MBWF) format 12

REFERENCES: 14

RF64: An Extended File Format for Audio EBU Tech 3306-2007

4

 Page intentionally left blank. This document is paginated for recto-verso printing

EBU Tech 3306-2007 RF64: An Extended File Format for Audio

5

RF64: An Extended File Format for Audio

EBU Committee First Issued Revised Re-issued

PMC 2006 December 2006 2007

Keywords: RF64, BWF, MBWF, Multichannel Audio, Files

1. INTRODUCTION
The RF64 file format should fulfil the longer-term need for multichannel sound in broadcasting and
archiving. The required effort for software implementers is very small. The changes that will be
needed to update existing systems will be reasonable in cost.

An RF64 file has additions to the basic Microsoft RIFF/WAVE specification to allow for either, or
both:

 more than 4 Gbyte file sizes when needed

 A maximum of 18 surround channels, stereo downmix channel and bitstream signals with
non-PCM coded data. This specification is based on the Microsoft Wave Format
Extensible [1] for multichannel parameters.

The file format is designed to be a compatible extension to the Microsoft RIFF/WAVE format and to
the BWF [2] [3] and its supplements and additional chunks. It extends the maximum size
capabilities of the RIFF/WAVE and BWF thus allowing for multichannel sound in broadcasting and
audio archiving.

RF64 can be used in the entire programme chain from capture to editing and play out and for short
or long term archiving of multichannel files.

An RF64 file with a bext chunk becomes an MBWF (Multichannel BWF) file. The terms ‘RF64’ and
‘MBWF’ can then be considered synonymous.

2. BASIC USER REQUIREMENTS
The basic user requirements were derived from discussions with a group of EBU Members. They are
summarised below:

 The file format should have an open, published specification

 Backwards compatibility to BWF and RIFF/WAVE must be maintained

 Linear PCM must be accommodated

 File sizes more than 4 Gbyte must be accommodated

 Minimum 8 channels (5.1 + stereo) must be accommodated

 Simulcast (5.1 + stereo in a single file) should be possible

 Streaming should be possible

 Editing should be possible

RF64: An Extended File Format for Audio EBU Tech 3306-2007

6

 A browsing version should be derivable directly from the file

 Must contain the technical Metadata necessary for play-back (e.g. Dolby Metadata)

 A low cost, easily accessible software player should be available

 Easy implementation for software developers and manufacturers.

Additionally, Swedish operational experience has demonstrated that production and archiving often
require storing and transport of PCM and non-PCM audio data, both or either in a single file.
Consequently, mechanisms for accommodating non-PCM audio streams (e.g. Dolby Digital and DTS)
have been added to the RF64 format.

3. DEFINITION OF A NEW FORMAT, RF64
With the advent of Windows 2000 Microsoft introduced the multichannel extension to its
RIFF/WAVE file format, called Wave Format Extensible. The main purpose of this file format was to
support multichannel audio in PC gaming applications.

The Wave Format Extensible channel mask contains 18 “#define” settings specifying different
loudspeaker positions (or channel allocations). Another “#define”, “SPEAKER_ALL” turns on all
loudspeakers (channels).

Microsoft Wave Format Extensible Channel Mask
#define SPEAKER_FRONT_LEFT 0x00000001
#define SPEAKER_FRONT_RIGHT 0x00000002
#define SPEAKER_FRONT_CENTER 0x00000004
#define SPEAKER_LOW_FREQUENCY 0x00000008
#define SPEAKER_BACK_LEFT 0x00000010
#define SPEAKER_BACK_RIGHT 0x00000020
#define SPEAKER_FRONT_LEFT_OF_CENTER 0x00000040
#define SPEAKER_FRONT_RIGHT_OF_CENTER 0x00000080
#define SPEAKER_BACK_CENTER 0x00000100
#define SPEAKER_SIDE_LEFT 0x00000200
#define SPEAKER_SIDE_RIGHT 0x00000400
#define SPEAKER_TOP_CENTER 0x00000800
#define SPEAKER_TOP_FRONT_LEFT 0x00001000
#define SPEAKER_TOP_FRONT_CENTER 0x00002000
#define SPEAKER_TOP_FRONT_RIGHT 0x00004000
#define SPEAKER_TOP_BACK_LEFT 0x00008000
#define SPEAKER_TOP_BACK_CENTER 0x00010000
#define SPEAKER_TOP_BACK_RIGHT 0x00020000
#define SPEAKER_ALL 0x80000000

To fulfil the user requirements listed above, RF64 requires some enhancements to the basic Wave
Format Extensible channel mask. Fortunately this is stored in a 32-bit variable that can therefore
accommodate a further 13 “#defines” to allow this increased functionality.

3.1 Enhancement for a PCM stereo down mix
No PCM stereo signal is included in the basic Wave Format Extensible.

EBU Tech 3306-2007 RF64: An Extended File Format for Audio

7

To include a stereo channel the following is added:

#define SPEAKER_STEREO_LEFT 0x20000000
#define SPEAKER_STEREO_RIGHT 0x40000000

With this enhancement a multichannel ‘X.1’ and a stereo down mix can be accommodated in a
single file.

3.2 Enhancement for control data
Addition of two new “#define” values for control data:

#define SPEAKER_CONTROLSAMPLE_1 0x08000000
#define SPEAKER_CONTROLSAMPLE_2 0x10000000

These control samples can be stored within the file. Technical or content metadata can be
positioned with sample accuracy along the essence file time line. The details of this feature are yet
to be defined.

3.3 Enhancement for bitstream non-PCM data
Bitstream signals according to IEC [4] and SMPTE [5] standards carry non-PCM multichannel audio
data coded with various perceptual methods.

Through this bitstream storage feature in the file format, Dolby AC3, Dolby E, DTS, MPEG-1 and 2
(at all three layers) and MPEG-2 AAC will be contained in the file as data bursts, “disguised” as PCM
linear. The bitstream audio signal is embedded in a structure that is similar to two interleaved
stereo audio channels in a linear PCM RIFF/WAVE or BWF file.

In RIFF files there is only one format chunk defining common parameters for all interleaved
channels in the audio data chunk. The format of the bitstream channels must comply with the
format of other multichannel PCM or stereo PCM channels if they are present in the same file.

To a receiver of the file, the type of non-PCM audio coding will be known only when the bitstream
is decoded from AES3 or SPDIF. It is likely that a new chunk will be developed to signal the
bitstream format contained in the file.

Adding 4 more “#define” values to the Wave Format Extensible channel mask will allow two
different non-PCM formats, as follows:

#define SPEAKER_BITSTREAM_1_LEFT 0x00800000
#define SPEAKER_BITSTREAM_1_RIGHT 0x01000000
#define SPEAKER_BITSTREAM_2_LEFT 0x02000000
#define SPEAKER_BITSTREAM_2_RIGHT 0x04000000

3.4 Breaking the 4 gigabyte barrier
The reason for the 4 Gbyte barrier is the 32-bit addressing in RIFF/WAVE and BWF. With 32 bits a
maximum of 4294967296 bytes = 4 Gbyte can be addressed. To solve this issue, 64-bit addressing is
needed.

RF64: An Extended File Format for Audio EBU Tech 3306-2007

8

Just changing the size of every field in a BWF to 64-bit would produce a file that is not compatible
with the standard RIFF/WAVE format - an obvious but important observation.

The approach adopted is to define a new 64-bit based Resource Interchange File Format called
RF64 that is identical to the original RIFF/WAVE format, except for the following changes:

 The ID ‘RF64’ is used instead of ‘RIFF’ in the first four bytes of the file

 A mandatory ‘ds64’ (data size 64) chunk is added, which has to be the first chunk after the
“RF64 chunk”.

The ‘ds64’ chunk has three mandatory 64-bit integer values, which replace three 32-bit
fields of the RIFF/WAVE format:

 riffSize (replaces the RIFF size field)

 dataSize (replaces the size field of the ‘data’ chunk)

 sampleCount (replaces the sample count value in the ‘fact’ chunk)

For all three 32-bit fields of the RIFF/WAVE format the following rule applies:

If the 32-bit value in the field is not “-1” (= FFFFFFFF hex) then this 32-bit value is used.
If the 32-bit value in the field is “-1” the 64-bit value in the ‘ds64’ chunk is used instead.

 One optional array of structs2 (see Annex A) with additional 64-bit chunk sizes is possible

The complete structure of the RF64 file format is illustrated in the following figure:

2 “Struct” is a C/C++ keyword that defines a structure type and/or a variable of a structure type.

EBU Tech 3306-2007 RF64: An Extended File Format for Audio

9

3.5 Achieving compatibility between BWF and RF64
In spite of higher sampling frequencies and multi-channel audio, some production audio files will
inevitably be smaller than 4 Gbyte and they should therefore stay in Broadcast Wave Format.

The problem arises that a recording application cannot know in advance whether the recorded
audio it is compiling will exceed 4 Gbyte or not at end of recording (i.e. whether it needs to use
RF64 or not).

The solution is to enable the recording application to switch from BWF to RF64 on the fly at the
4 Gbyte size-limit, while the recording is still going on.

This is achieved by reserving additional space in the BWF by inserting a ‘JUNK’ chunk 3 that is of
the same size as a ‘ds64’ chunk. This reserved space has no meaning for Broadcast Wave, but will
become the ‘ds64’ chunk, if a transition to RF64 is necessary.

3 The ‘JUNK’ chunk is part of the original RIFF/WAVE standard. It is a placeholder and it will be ignored by any audio
application.

RF64: An Extended File Format for Audio EBU Tech 3306-2007

10

At the beginning of a recording, a RF64-aware application will create a standard RIFF/WAVE or BWF
with a ’JUNK’ chunk as the first chunk. While recording, it will check the RIFF and data sizes. If
they exceed 4 Gbyte, the application will:

 Replace the chunkID ‘JUNK’ with ‘ds64’ chunk. (this transforms the previous JUNK chunk
into a ds64 chunk).

 Insert the RIFF size, 'data' chunk size and sample count in the 'ds64' chunk

 Set RIFF size, 'data' chunk size and sample count in the 32 bit fields to -1 = FFFFFFFF hex

 Replaces the ID ‘RIFF’ with ‘RF64’ in the first four bytes of the file

 Continue with the recording.

EBU Tech 3306-2007 RF64: An Extended File Format for Audio

11

Annex A: Formal description of RIFF/WAVE and RF64/WAVE structures

A.1 Chunks and Structs in the RIFF/WAVE (BWF) format

struct RiffChunk // declare RiffChunk structure
{

char chunkId[4]; // ‘RIFF’
unsigned int32 chunkSize; // 4 byte size of the traditional RIFF/WAVE file
char riffType[4]; // ‘WAVE’

};

struct JunkChunk // declare JunkChunk structure
{

char chunkId[4]; // ‘JUNK’
unsigned int32 chunkSize; // 4 byte size of the ‘JUNK’ chunk. This must be at

// least 28 if the chunk is intended as a
// place-holder for a ‘ds64’ chunk.

char chunkData[]4; // dummy bytes
};

struct FormatChunk5 // declare FormatChunk structure
{

char chunkId[4]; // ‘fmt ’
unsigned int32 chunkSize; // 4 byte size of the ‘fmt ’ chunk
unsigned int16 formatType; // WAVE_FORMAT_PCM = 0x0001, etc.
unsigned int16 channelCount; // 1 = mono, 2 = stereo, etc.
unsigned int32 sampleRate; // 32000, 44100, 48000, etc.
unsigned int32 bytesPerSecond; // only important for compressed formats
unsigned int16 blockAlignment; // container size (in bytes) of one set of samples
unsigned int16 bitsPerSample; // valid bits per sample 16, 20 or 24
unsigned int16 cbSize // extra information (after cbSize) to store
char extraData[22] // extra data of WAVE_FORMAT_EXTENSIBLE when necessary

};

struct DataChunk // declare DataChunk structure
{

char chunkId[4]; // ‘data’
unsigned int32 chunkSize; // 4 byte size of the ‘data’ chunk
char waveData[] // audio samples

};

Note: Any other chunks that are valid in a RIFF/WAVE file are also valid in a RF64/WAVE file. For
example, the BWF extensions for RIFF/WAVE can be used “as is” in any RF64/WAVE file.

4 The empty bracket is not standard C/C++ syntax. It is used to show that these arrays have a variable number of
elements (which might even be zero).
5 This is already the specialised format chunk for PCM audio data.

RF64: An Extended File Format for Audio EBU Tech 3306-2007

12

A.2 New Chunks and Structs in the RF64/WAVE (MBWF) format

struct RF64Chunk // declare RF64Chunk structure

{

char chunkId[4]; // ‘RF64’

unsigned int32 chunkSize; // -1 = 0xFFFFFFFF means don’t use this data, use

// riffSizeHigh and riffSizeLow in ‘ds64’ chunk instead

char rf64Type[4]; // ‘WAVE’

};

struct ChunkSize64 // declare ChunkSize64 structure

{

char chunkId[4]; // chunk ID (i.e. “big1” – this chunk is a big one)

unsigned int32 chunkSizeLow; // low 4 byte chunk size

unsigned int32 chunkSizeHigh; // high 4 byte chunk size

};

struct DataSize64Chunk // declare DataSize64Chunk structure

{

char chunkId[4]; // ‘ds64’

unsigned int32 chunkSize; // 4 byte size of the ‘ds64’ chunk

unsigned int32 riffSizeLow; // low 4 byte size of RF64 block

unsigned int32 riffSizeHigh; // high 4 byte size of RF64 block

unsigned int32 dataSizeLow; // low 4 byte size of data chunk

unsigned int32 dataSizeHigh; // high 4 byte size of data chunk

unsigned int32 sampleCountLow; // low 4 byte sample count of fact chunk

unsigned int32 sampleCountHigh; // high 4 byte sample count of fact chunk

unsigned int32 tableLength; // number of valid entries in array “table”

chunkSize64 table[];

};

The array of “ChunkSize64” structs is used to store the length of any chunk other than ‘data’ in the
optional part of the ‘ds64’ chunk. Currently, no standard chunk type other than ‘data’ is likely to
exceed a size of 4 Gbyte even in extremely large audio files (e.g. the BWF ‘levl’ chunk will typically
exceed 4 Gbyte only when the ‘data’ chunk reaches about 512 Gbyte).

EBU Tech 3306-2007 RF64: An Extended File Format for Audio

13

struct Guid

{

unsigned int32 data1;

unsigned int16 data2;

unsigned int16 data3;

unsigned int32 data4;

unsigned int32 data5;

};

struct FormatExtensibleChunk // declare FormatExtensibleChunk structure for

// WAVE_FORMAT_EXTENSIBLE

{

char chunkId[4]; // ‘fmt ’
unsigned int32 chunkSize; // 4 byte size of the ‘fmt ’ chunk
unsigned int16 formatType; // WAVE_FORMAT_EXTENSIBLE = 0xFFFE
unsigned int16 channelCount; // 1 = mono, 2 = stereo, etc.
unsigned int32 sampleRate; // 32000, 44100, 48000, etc.
unsigned int32 bytesPerSecond; // only important for compressed formats
unsigned int16 blockAlignment; // container size (in bytes) of one set of samples
unsigned int16 bitsPerSample; // bits per sample in container size * 8, i.e. 8, 16, 24
unsigned int16 cbSize // extra information (after cbSize) to store
unsigned int16 validBitsPerSample // valid bits per sample i.e. 8, 16, 20, 24
unsigned int32 channelMask // channel mask for channel allocation
Guid subFormat // KSDATAFORMAT_SUBTYPE_PCM

// data1 = 0x00000001

// data2 = 0x0000

// data3 = 0x0010

// data4 = 0xAA000080

// data5 = 0x719B3800

};

RF64: An Extended File Format for Audio EBU Tech 3306-2007

14

REFERENCES:

[1] Wave Format Extensible: Multiple Channel Audio Data and WAVE Files

[2] EBU Tech 3285 Specification of the Broadcast Wave Format (BWF) - Version 1 - first edition

[3] EBU Tech 3285 s 1 - 5 Supplements to the BWF specification

IEC 61937-1 Digital audio - Interface for non-linear PCM encoded audio bitstream applying
IEC 60958 (AES3, SPDIF) - Part 1: General

IEC 61937-3 Part 3: Non-linear PCM bitstreams according to the AC-3 format

IEC 61937-5 Part 5: Non-linear PCM bitstreams according to the DTS format(s)

[4]

IEC 61937-6 Part 6: Non-linear PCM bitstreams according to the MPEG2 AAC audio formats

SMPTE 337M-2000 Format for Non-PCM Audio and Data in an AES3 Serial Digital Audio Interface

SMPTE 338M-2000 Format for Non-PCM Audio and Data in AES3 – Data Types
(Supported data types: AC-3, MPEG-1 or MPEG-2, Layer 1, 2 or 3, SMPTE KLV
data and Dolby E).

SMPTE 339M-2000 Format for Non-PCM Audio and Data in AES3 – Generic Data Types

[5]

SMPTE 340M Format for Non-PCM Audio and Data in AES3 – ATSC A/52 (AC-3) Data Type

Wave Format extensible is explained at: www.microsoft.com/whdc/device/audio/multichaud.mspx

EBU standards are available for free download from: www.ebu.ch/en/technical/publications/index.php

IEC- standards can be purchased via: www.iec.ch/searchpub/cur_fut.htm

SMPTE-standards can be purchased via: www.smpte.org/smpte_store/standards/

(End of document)

