
1

EBU – TECH 3285

Specification of the
Broadcast Wave Format (BWF)

A format for audio data files in broadcasting

Version 2.0

Geneva
May 2011

* Page intentionally left blank. This document is paginated for two sided printing

Tech 3285 v2 Broadcast Wave Format Specification

3

Summary

The Broadcast Wave Format (BWF) is a file format for audio data. It can be used for the seamless
exchange of audio material between different broadcast environments and between equipment
based on different computer platforms.

As well as the audio data, a BWF file contains the minimum information – or metadata – which is
considered necessary for all broadcast applications. The Broadcast Wave Format is based on the
Microsoft WAVE audio file format, to which the EBU has added a “Broadcast Audio Extension”
chunk.

BWF Version 0

The specification of the Broadcast Wave Format for PCM audio data (now referred to as Version 0)
was published in 1997 as EBU Tech 3285.

BWF Version 1

Version 1 differs from Version 0 only in that 64 of the 254 reserved bytes in Version 0 are used to
contain a SMPTE UMID [1].

BWF Version 2

Version 2 is a substantial revision of Version 1 which incorporates loudness metadata (in accordance
with EBU R 128 [2]) and which takes account of the publication of Supplements 1 – 6 and other
relevant documentation. This version is fully compatible with Versions 0 and 1, but users who wish
to ensure that their files meet the requirements of EBU Recommendation R 128 will need to ensure
that their systems can read and write the loudness metadata.

Broadcast Wave Format Specification Tech 3285 v2

4

Conformance Notation

This document contains both normative text and informative text.

All text is normative except for that in the Introduction, any section explicitly labelled as
‘Informative’ or individual paragraphs which start with ‘Note:’.

Normative text describes indispensable or mandatory elements. It contains the conformance
keywords ‘shall’, ‘should’ or ‘may’, defined as follows:

‘Shall’ and ‘shall not’: Indicate requirements to be followed strictly and from which no
deviation is permitted in order to conform to the document.

‘Should’ and ‘should not’: Indicate that, among several possibilities, one is recommended as
particularly suitable, without mentioning or excluding others.

 OR indicate that a certain course of action is preferred but not
necessarily required.

 OR indicate that (in the negative form) a certain possibility or course
of action is deprecated but not prohibited.

‘May’ and ‘need not’: Indicate a course of action permissible within the limits of the
document.

Default identifies mandatory (in phrases containing “shall”) or recommended (in phrases containing
“should”) presets that can, optionally, be overwritten by user action or supplemented with other
options in advanced applications. Mandatory defaults must be supported. The support of
recommended defaults is preferred, but not necessarily required.

Informative text is potentially helpful to the user, but it is not indispensable and it does not affect
the normative text. Informative text does not contain any conformance keywords.

A conformant implementation is one which includes all mandatory provisions (‘shall’) and, if
implemented, all recommended provisions (‘should’) as described. A conformant implementation
need not implement optional provisions (‘may’) and need not implement them as described.

Tech 3285 v2 Broadcast Wave Format Specification

5

Contents

1. Introduction .. 7

1.1 Version compatibility .. 8

2. Broadcast Wave Format File ... 9

2.1 Contents of a Broadcast Wave Format file ... 9

2.2 Existing Chunks defined as part of the RIFF standard .. 9

2.3 Broadcast Audio Extension Chunk.. 9

2.4 Treatment of Loudness Parameters ..12

2.5 Other information specific to applications..13

3. References ...13

Appendix A: RIFF WAVE (.WAV) file format ...15

A1. Waveform Audio File Format (WAVE)..15

A1.1 WAVE Format Chunk ..15

A1.2 WAVE Format Categories ...16

A2. Pulse Code Modulation (PCM) Format ...16

A2.1 Data Packing for PCM WAVE Files...17

A2.2 Data Format of the Samples ...18

A2.3 Examples of PCM WAVE Files ..18

A2.4 Storage of WAVE Data ..19

A2.5 Fact Chunk..19

A2.6 Other optional Chunks ..19

A3. Other WAVE Types..19

A3.1 General information ..19

A3.2 Fact Chunk..19

A3.3 WAVE Format Extension ..20

Broadcast Wave Format Specification Tech 3285 v2

6

*Page intentionally left blank. This document is paginated for two sided printing

Tech 3285 v2 Broadcast Wave Format Specification

Specification of the Broadcast Wave Format (BWF)

A format for audio data files in broadcasting

EBU Committee First Issued Revised Re-issued

TC 1997 2001, 2011

Keywords: Broadcast Wave File, BWF, RIFF WAV, Metadata, loudness

1. Introduction
The Broadcast Wave Format (BWF) is based on the Microsoft WAVE audio file format, which is a
type of file specified in the Microsoft “Resource Interchange File Format”, RIFF [3]. WAVE files
specifically contain audio data. The basic building block of RIFF files is a chunk which contains
specific information, an identification field and a size field. A RIFF file consists of a number of
chunks.

For the BWF, some restrictions are applied to the original WAVE format. In addition, the BWF file
includes a <Broadcast Audio Extension> chunk. This illustrated in Figure 1, below.

<wave-data>

<broadcast-audio
extension>

<fmt-ck>
[<fact-ck>]

[<……………..>]

MPEG formats only

Other optional chunks not
supported by all applications

Custom chunk defined in this document

[<mpeg-audio-extention >]

MPEG formats only

The audio data

Compulsory
chunk defined
by Microsoft

BWF file

Figure 1: Broadcast Wave Format file

This document contains the specification of Version 2 of the broadcast audio extension chunk,
which is used in all BWF files. In addition, information on the PCM Wave and RIFF formats and how
RIFF can be extended to other types of audio data may be found in Appendix A.

7

Broadcast Wave Format Specification Tech 3285 v2

8

Detailed specifications of the extension of the BWF to other types of audio data and of the other
chunks which the EBU has ratified are published in Supplements to this document; the References
section provides a guide.

In particular, the EBU has ratified the Multi-channel Broadcast Wave Format, MBWF, which specifies
the means for enhancing the RF64 wave format with BWF metadata. This development allows the
use of larger files (file sizes greater than 4 Gbyte) and accommodates wave files with more than
two channels [4].

In addition, the Audio Engineering Society has ratified the “Cart Chunk” for audio-delivery systems
as AES46 [5].

1.1 Version compatibility
Version 0 of the BWF was published in 1997.

Version 1, published in July, 2001, differs from Version 0 only in that 64 of the 254 reserved bytes
in Version 0 are used to contain a SMPTE UMID and the <Version> field is changed accordingly.

Version 1 is backwards compatible with Version 0. This means that software designed to
read Version 0 files will interpret Version 1 files correctly except that it will ignore the UMID
field.

The change is also forwards compatible. This means that Version 1 software will be able to
read Version 0 files correctly. Ideally, Version 1 software needs to read the <Version> field
to determine if a UMID is present. However if the Version number is not read, software will
read all zeros in the UMID field in a Version 0 file. This will not be a valid UMID and will be
ignored. It was replaced by Version 2 in May, 2011.

Version 2 differs from Version 1 only in that 10 of the 190 reserved bytes in Version 1 are used to
carry information about the file’s loudness and the <Version> field is changed accordingly.

Version 2 is backwards compatible with Versions 1 and 0. This means that software designed
to read Version 1 and Version 0 files will interpret the files correctly except that Version 0
software will ignore the UMID and loudness information which may be present and Version 1
software will ignore the loudness information. Therefore, users of such devices will lose
metadata unless special precautions are taken. In addition, early BWF-aware devices will be
unable to cope with the larger RF64 and MBWF files and may not recognise any of the chunks
which have been defined since 2001.

The change is also forwards compatible. This means that Version 2 software will be able to
read Version 0 and Version 1 files correctly. Software needs to read the <Version> field to
determine if a UMID and loudness metadata are present.

Tech 3285 v2 Broadcast Wave Format Specification

9

2. Broadcast Wave Format File

2.1 Contents of a Broadcast Wave Format file
A Broadcast Wave Format file shall start with the mandatory Microsoft RIFF “WAVE” header and at
least the following chunks:

<WAVE-form> ->

 RIFF(‘WAVE’

 <broadcast_audio_extension> //information on the audio sequence

 <fmt-ck> //Format of the audio signal: PCM/MPEG

 [<fact-ck>] //Fact chunk is required for MPEG formats only

 [<mpeg_audio_extension>] //MPEG Audio Extension chunk is required for MPEG
 formats only

 <wave-data>) //sound data

Any additional chunks that are present in the file and which are not specified in this document and
its Supplements, in EBU Tech 3306 or in AES46 are to be considered private. Applications are not
required to interpret or make use of these chunks. Thus, the integrity of the data contained in any
chunks not specified in the documents or chunks listed is not guaranteed. However, BWF-compliant
applications shall pass these chunks.

2.2 Existing Chunks defined as part of the RIFF standard
The RIFF standard is defined in documents issued by the Microsoft Corporation [3]. This application
uses a number of chunks which are already defined. These chunks are:

 fmt-ck

 fact-ck

The descriptions of these chunks are given for information in Appendix A.

2.3 Broadcast Audio Extension Chunk
Extra parameters needed for exchange of material between broadcasters shall be added in a
specific “Broadcast Audio Extension” chunk, defined as follows:

broadcast_audio_extension typedef struct {

 DWORD ckID; /* (broadcastextension)ckID=bext. */

 DWORD ckSize; /* size of extension chunk */

 BYTE ckData[ckSize]; /* data of the chunk */

}

typedef struct broadcast_audio_extension {

CHAR Description[256]; /* ASCII : «Description of the sound sequence»
*/

CHAR Originator[32]; /* ASCII : «Name of the originator» */

CHAR OriginatorReference[32]; /* ASCII : «Reference of the originator» */

CHAR OriginationDate[10]; /* ASCII : «yyyy:mm:dd» */

Broadcast Wave Format Specification Tech 3285 v2

10

CHAR OriginationTime[8]; /* ASCII : «hh:mm:ss» */

DWORD TimeReferenceLow; /* First sample count since midnight, low word
*/

DWORD TimeReferenceHigh; /* First sample count since midnight, high word
*/

WORD Version; /* Version of the BWF; unsigned binary number */

BYTE UMID_0 /* Binary byte 0 of SMPTE UMID */

....

BYTE UMID_63 /* Binary byte 63 of SMPTE UMID */

WORD LoudnessValue; /* WORD : «Integrated Loudness Value of the file
in LUFS (multiplied by 100) » */

WORD LoudnessRange; /* WORD : «Loudness Range of the file in LU
(multiplied by 100) » */

WORD MaxTruePeakLevel; /* WORD : «Maximum True Peak Level of the file
expressed as dBTP (multiplied by 100) » */

WORD MaxMomentaryLoudness; /* WORD : «Highest value of the Momentary
Loudness Level of the file in LUFS (multiplied
by 100) » */

WORD MaxShortTermLoudness; /* WORD : «Highest value of the Short-Term
Loudness Level of the file in LUFS (multiplied
by 100) » */

BYTE Reserved[180]; /* 180 bytes, reserved for future use, set to
“NULL” */

CHAR CodingHistory[]; /* ASCII : « History coding » */

} BROADCAST_EXT

 Field Description

Description ASCII string (maximum 256 characters) containing a free description of
the sequence. To help applications which display only a short
description, it is recommended that a resume of the description is
contained in the first 64 characters and the last 192 characters are used
for details.

If the length of the string is less than 256 characters the last one shall be
followed by a null character (00).

Originator ASCII string (maximum 32 characters) containing the name of the
originator/ producer of the audio file. If the length of the string is less
than 32 characters the field shall be ended by a null character.

OriginatorReference ASCII string (maximum 32 characters) containing an unambiguous
reference allocated by the originating organisation. If the length of the
string is less than 32 characters the field shall be terminated by a null
character.

 Note: The EBU has defined a format for the OriginatorReference
field. See EBU Recommendation R 99 [6].

OriginationDate 10 ASCII characters containing the date of creation of the audio
sequence. The format shall be « ‘,year’,-,’month,’-‘,day,’»
with 4 characters for the year and 2 characters per other item.

Tech 3285 v2 Broadcast Wave Format Specification

11

Year is defined from 0000 to 9999
Month is defined from 1 to 12
Day is defined from 1 to 28, 29, 30 or 31

The separator between the items can be anything but it is recommended
that one of the following characters be used:

‘-’ hyphen ‘_’ underscore ‘:’ colon ‘ ’ space ‘.’ stop

OriginationTime 8 ASCII characters containing the time of creation of the audio sequence.
The format shall be « ‘hour’-‘minute’-‘second’» with 2 characters per
item.

Hour is defined from 0 to 23.
Minute and second are defined from 0 to 59.

The separator between the items can be anything but it is recommended
that one of the following characters be used:

‘-’ hyphen ‘_’ underscore ‘:’ colon ‘ ’ space ‘.’ stop

TimeReference These fields shall contain the time-code of the sequence. It is a 64-bit
value which contains the first sample count since midnight. The number
of samples per second depends on the sample frequency which is defined
in the field <nSamplesPerSec> from the <format chunk>.

Version An unsigned binary number giving the version of the BWF. This number is
particularly relevant for the carriage of the UMID and loudness
information. For Version 1 it shall be set to 0001h and for Version 2 it
shall be set to 0002h.

UMID 64 bytes containing a UMID (Unique Material Identifier) to standard
SMPTE 330M [1]. If only a 32 byte "basic UMID" is used, the last 32 bytes
should be set to zero. (The length of the UMID is given internally.)

LoudnessValue A 16-bit signed integer, equal to round(100x the Integrated Loudness
Value of the file in LUFS).

LoudnessRange A 16-bit signed integer, equal to round(100x the Loudness Range of the
file in LU).

MaxTruePeakLevel A 16-bit signed integer, equal to round(100x the Maximum True Peak
Value of the file in dBTP).

MaxMomentaryLoudness A 16-bit signed integer, equal to round(100x the highest value of the
Momentary Loudness Level of the file in LUFS).

MaxShortTermLoudness A 16-bit signed integer, equal to round(100x the highest value of the
Short-term Loudness Level of the file in LUFS).

 Note: The loudness terms are explained in EBU Recommendation
R 128 [2], EBU Tech 3341 [7] and EBU Tech 3342 [8],
supported by EBU Tech 3343 and EBU Tech 3344

Reserved 180 bytes reserved for extension. If the Version field is set to 0001h or
0002h, these 180 bytes shall be set to a NULL (zero) value.

Broadcast Wave Format Specification Tech 3285 v2

12

CodingHistory Unrestricted ASCII characters containing a collection of strings
terminated by CR/LF. Each string shall contain a description of a coding
process applied to the audio data. Each new coding application shall add
a new string with the appropriate information.

This information shall contain the type of sound (PCM or MPEG) with its
specific parameters :

PCM : mode (mono, stereo), size of the sample (8, 16 bits) and sample
frequency,

MPEG : sample frequency, bit rate, layer (I or II) and the mode (mono,
stereo, joint stereo or dual channel),

It is recommended that the manufacturers of the coders provide an ASCII
string for use in the coding history.

 Note: The EBU has defined a format for coding history which will
simplify the interpretation of the information provided in
this field. See EBU Recommendation R 98 [9].

Note: The EBU has defined a format for BWF files which have more than two audio
channels, the MBWF. See EBU Tech 3306 [4].

2.4 Treatment of Loudness Parameters
The loudness parameters are represented by integers, but they preserve a precision of two decimal
places by being multiplied by 100 before being rounded. The rounding function which shall be used
is defined as follows:

integer representation = integer part of (x + sgn(x) · 0.5)

where x is the value to be represented, multiplied by 100

and where sgn() is the signum operator. sgn(x) = -1 if x < 0, 0 if x = 0, 1 if x > 0.

This rounding method is commonly referred to as “round to nearest, ties away from zero” because
where the fractional part of the number is 5 (midway between integers), the rounding is up for
positive numbers and down for negative numbers.

Examples

Negative numbers:

Float value Calculation Value carried in BWF
(decimal/ hexadecimal)

-22.644 integer[(-22.644 x 100) + sgn(-22.644 x 100) · 0.5] -2264/ F728h

-22.645 integer[(-22.645 x 100) + sgn(-22.645 x 100) · 0.5] -2265/ F727h

-22.646 integer[(-22.646 x 100) + sgn(-22.646 x 100) · 0.5] -2265/ F727h

Tech 3285 v2 Broadcast Wave Format Specification

13

Positive numbers:

Float value Calculation Value carried in BWF
(decimal/ hexadecimal)

12.764 integer[(12.764 x 100) + sgn(12.764 x 100) · 0.5] 1276/ 04FCh

12.765 integer[(12.765 x 100) + sgn(12.765 x 100) · 0.5] 1277/ 04FDh

12.766 integer[(12.766 x 100) + sgn(12.766 x 100) · 0.5] 1277/ 04FDh

If any of the loudness parameters are not being used then their 16-bit integer values shall be set to
7FFFh, which is a value outside the range of the parameter values.

For LoudnessValue, MaxTruePeakLevel, MaxMomentaryLoudness and MaxShortTermLoudness, the
range of valid values is D8F1h to FFFFh (corresponding to the floating-point equivalent values of
-99.99 to -0.01) and 0000h to 270Fh (0.00 to 99.99). The most significant bit of the 16-bit
hexadecimal number is the sign bit; hence, values between 8000h and FFFFh represent negative
numbers.

For LoudnessRange the range of valid values is 0000h to 270Fh (0.00 to 99.99).

Therefore, if 7FFFh occurs, it is known that that particular parameter must be ignored.

If any parameters are found to have values outside their valid ranges (not just 7FFFh) when reading
the chunk then they shall be ignored too.

2.5 Other information specific to applications
The EBU has defined other chunks to carry, or to point to data that are specific to certain
applications, e.g. multi-channel audio, Dolby Metadata or any XML data. See the References section
or the EBU technical website (http://tech.ebu.ch) for details.

3. References
[1] SMPTE ST 330:2004 Television – Unique Material Identifier (UMID)

[2] EBU R 128 Loudness normalisation and permitted maximum level of audio signals

[3] MS RIFF Microsoft Resource Interchange File Format, RIFF – part of the
Multimedia Registration Kit, rev 3.0:
http://support.microsoft.com/kb/q120253/

[4] EBU Tech 3306 MBWF / RF64 : An Extended File Format for Audio

[5] AES46 AES standard for network and file transfer of audio – Audio-file transfer
and exchange – Radio traffic audio delivery extension to the broadcast-
WAVE-file format

[6] EBU R 99 'Unique’ Source Identifier (USID) for use in the OriginatorReference field
of the Broadcast Wave Format

[7] EBU Tech 3341 Loudness Metering: ‘EBU Mode’ metering to supplement Loudness
normalisation in accordance with EBU R 128

[8] EBU Tech 3342 Loudness Range: A descriptor to supplement Loudness normalisation in
accordance with EBU R 128

[9] EBU R 98 Format for CodingHistory field in Broadcast Wave Format files, BWF

http://tech.ebu.ch/
http://support.microsoft.com/kb/q120253/

Broadcast Wave Format Specification Tech 3285 v2

14

Further reading

EBU R 85: Use of the Broadcast Wave Format for the Exchange of Audio Data
Files

EBU R 111: Multichannel Use of the BWF Audio File Format (MBWF)

EBU Tech 3285 Supplement 1: MPEG Audio

EBU Tech 3285 Supplement 2: Capturing Report (includes Quality and Cue-sheet data)

EBU Tech 3285 Supplement 3: Peak-Envelope Chunk

EBU Tech 3285 Supplement 4: Link Chunk

EBU Tech 3285 Supplement 5: XML Data Chunk

EBU Tech 3285 Supplement 6: Dolby Metadata Chunk

EBU Tech 3343: Practical Guidelines for Production and Implementation in
accordance with EBU R 128

EBU Tech 3344: Practical Guidelines for Distribution of Programmes in accordance
with EBU R 128

Tech 3285 v2 Broadcast Wave Format Specification

15

Appendix A: RIFF WAVE (.WAV) file format

The information in this appendix is taken from the specification documents of Microsoft RIFF file
format. Minor amendments have been made for clarity. It is included for information only.

For full information, consult the latest version of the Microsoft Multimedia Registration Kit [3].

[EBU Note: EBU explanatory notes are shown in italics between square brackets]

A1. Waveform Audio File Format (WAVE)
The WAVE form is defined as follows. Programs must expect (and ignore) any unknown chunks
encountered, as with all RIFF forms. However, <fmt-ck> must always occur before <wave-data>,
and both of these chunks are mandatory in a WAVE file.

<WAVE-form> ->

 RIFF(‘WAVE’

 <fmt-ck> // Format

 [<fact-ck>] // Fact chunk

 [<other-ck>] // Other optional chunks

 <wave-data>) // Wave data

The WAVE chunks are described in the following sections.

A1.1 WAVE Format Chunk
The WAVE format chunk <fmt-ck> specifies the format of the <wave-data>. The <fmt-ck> is defined
as follows:

<fmt-ck> -> fmt(<common-fields>

<format-specific-fields>)

<common-fields> ->

 struct{

 WORD wFormatTag; // Format category

 WORD nChannels; // Number of channels

 DWORD nSamplesPerSec; // Sampling rate

 DWORD nAvgBytesPerSec;// For buffer estimation

 WORD nBlockAlign; // Data block size

 }

Broadcast Wave Format Specification Tech 3285 v2

16

The fields in the <common-fields> portion of the chunk are as follows:

 Field Description

wFormatTag A number indicating the WAVE format category of the file. The content of the
<format-specific-fields> portion of the ‘fmt’ chunk, and the interpretation of
the waveform data, depend on this value.

nchannels The number of channels represented in the waveform data: 1 for mono or 2 for
stereo.

 [EBU Note: The EBU has defined the Multi-channel Broadcast Wave
Format [4] where more than two channels of audio are
required.]

nSamplesPerSec The sampling rate (in sample per second) at which each channel should be
played.

nAvgBytesPerSec The average number of bytes per second at which the waveform data should be
transferred. Playback software can estimate the buffer size using this value.

nBlockAlign The block alignment (in bytes) of the waveform data. Playback software needs
to process a multiple of <nBlockAlign> bytes of data at a time, so the value of
<nBlockAlign> can be used for buffer alignment.

The <format-specific-fields> consist of zero or more bytes of parameters. The parameters that
occur depend on the WAVE format category, as described below. Playback software should be
written to allow for (and ignore) any unknown <format-specific-fields> parameters that occur at
the end of this field.

A1.2 WAVE Format Categories
The format category of a WAVE file is specified by the value of the <wFormatTag> field of the ‘fmt’
chunk. The representation of data in <wave-data>, and the content of the <format-specific-fields>
of the ‘fmt’ chunk, depend on the format category.

Among the currently-defined open, non-proprietary WAVE format categories are:

wFormatTag Value Format Category

WAVE_FORMAT_PCM (0001h) Microsoft Pulse Code Modulation (PCM) format

WAVE_FORMAT_MPEG (0050h) MPEG-1 Audio (audio only)

[EBU Note: Although other WAVE formats are registered with Microsoft, only the above
formats are at present used with the BWF. Details of the PCM WAVE format are
given in the following section. General information on other WAVE formats is
given in section 3. Details of the MPEG WAVE format are given in Supplement 1 to
this document and details of the Broadcast Wave Format extension to multi-
channel audio are given in EBU Tech 3306. Other WAVE formats may be defined in
future Supplements.]

A2. Pulse Code Modulation (PCM) Format
If the <wFormatTag> field of the <fmt-ck> is set to WAVE_FORMAT_PCM, then the waveform data
consists of samples represented in pulse code modulation (PCM) format. For PCM waveform data,

Tech 3285 v2 Broadcast Wave Format Specification

17

the <format-specific-fields> is defined as follows:

<PCM-format-specific> ->

 struct{

 WORD nBitsPerSample; // Sample size

 }

The <nBitsPerSample> field specifies the number of bits of data used to represent each sample of
each channel. If there are multiple channels, the sample size is the same for each channel.

For PCM data, the <nAvgBytesPerSec> field of the ‘fmt’ chunk should be equal to the following
formula rounded up to the next whole number:

nChannels x nSamplesPerSecond x nBitsPerSample

8

The <nBlockAlign> field should be equal to the following formula, rounded to the next whole
number:

nChannels x nBitsPerSample

8

[EBU Note: The above formulae do not always give the correct answer. Strictly speaking, the
number of bytes per sample (nBitsPerSample/8) should be rounded first. Then
this integer should be multiplied by <nChannels> (which is always an integer) to
give <nBlockAlign>. This in turn should be multiplied by <nSamplesPerSecond> to
give <nAvgBytesPerSec>].

A2.1 Data Packing for PCM WAVE Files
In a single-channel WAVE file, samples are stored consecutively. For stereo WAVE files, channel 0
represents the left channel, and channel 1 represents the right channel. The speaker position
mapping for a BWF file with more than two channels is defined in EBU Tech 3306. In multiple-
channel WAVE files, samples are interleaved.

The following diagrams show the data packing for 8-bit mono and stereo WAVE files:

Sample 1 Sample 2 Sample 3 Sample 4

Channel 0 Channel 0 Channel 0 Channel 0

Data Packing for 8-Bit Mono PCM

Sample 1 Sample 2

Channel 0
(left)

Channel 1
(right)

Channel 0
(left)

Channel 1
(right)

Data Packing for 8-Bit Stereo PCM

Broadcast Wave Format Specification Tech 3285 v2

18

The following diagrams show the data packing for 16-bit mono and stereo WAVE files:

Sample 1 Sample 2

Channel 0
low-order byte

Channel 0
high-order byte

Channel 0
low-order byte

Channel 0
high-order byte

Data Packing for 16-Bit Mono PCM

Sample 1

Channel 0
(left)

Channel 0
(left)

Channel 1
(right)

Channel 1
(right)

low-order byte high-order byte low-order byte
high-order

byte

Data Packing for 16-Bit Stereo PCM

A2.2 Data Format of the Samples
Each sample is contained in an integer i. The size of i is the smallest number of bytes required to
contain the specified sample size. The least significant byte is stored first. The bits that represent
the sample amplitude are stored in the most significant bits of i, and the remaining bits are set to
zero.

For example, if the sample size (recorded in <nBitsPerSample>) is 12 bits, then each sample is
stored in a two-byte integer. The least significant four bits of the first (least significant) byte is set
to zero. The data format and maximum and minimum values for PCM waveform samples of various
sizes are as follows:

Sample Size Data Format Maximum Value Minimum Value

One to eight bits Unsigned integer 255 (FFh) 0

Nine or more bits Signed integer i Largest positive
value of i

Most negative
value of i

For example, the maximum, minimum, and midpoint values for 8-bit and 16-bit PCM waveform data
are as follows:

Format Maximum Value Minimum Value Midpoint Value

8-bit PCM 255 (FFh) 0 128 (80h)

16-bit PCM 32767 (7FFFh) -32768 (-8000h) 0

A2.3 Examples of PCM WAVE Files
Example of a PCM WAVE file with 11.025 kHz sampling rate, mono, 8 bits per sample:

RIFF(‘WAVE’ fmt(1, 1, 11025, 11025, 1, 8)

 data(<wave-data>))

Example of a PCM WAVE file with 22.05 kHz sampling rate, stereo, 8 bits per sample:

RIFF(‘WAVE’ fmt(1, 2, 22050, 44100, 2, 8)

 data(<wave-data>))

Tech 3285 v2 Broadcast Wave Format Specification

19

Example of a PCM WAVE file with 44.1 kHz sampling rate, mono, 20 bits per sample:

RIFF(‘WAVE’ INFO(INAM(“O Canada”Z))

 fmt(1, 1, 44100, 132300, 3, 20)

 data(<wave-data>))

A2.4 Storage of WAVE Data
The <wave-data> contains the waveform data. It is defined as follows:

<wave-data> -> { <data-ck> }

<data-ck> -> data(<wave-data>)

A2.5 Fact Chunk
The <fact-ck> fact chunk stores important information about the contents of the WAVE file. This
chunk is defined as follows:

<fact-ck> -> fact(<dwFileSize:DWORD>) // Number of samples

The chunk is not required for PCM files.

The “fact” chunk will be expanded to include any other information required by future WAVE
formats. Added fields will appear following the <dwFileSize> field. Applications can use the chunk
size field to determine which fields are present.

A2.6 Other optional Chunks
A number of other chunks are specified for use in the WAVE format. Details of these chunks are
given in the specification of the WAVE format and any updates to it.

[EBU Note: The WAVE format can support other optional chunks which can be included in
WAVE files to carry specific information. As stated in section 2.1, those chunks
that are present in a Broadcast Wave Format file and which are not specified
either in this document, Tech 3306, their Supplements or in AES46 are considered
to be private chunks and will be ignored by applications which cannot interpret
them.]

A3. Other WAVE Types
[EBU Note: the following information has been extracted from the Microsoft Multimedia

Registration Kit [3]. It outlines the necessary extensions of the basic WAVE file
(used for PCM audio) to cover other types of WAVE format.]

A3.1 General information
All newly defined WAVE types must contain both a <fact chunk> and an extended wave format
description within the <fmt-ck> format chunk. RIFF WAVE files of type WAVE_FORMAT_PCM need
not have the extra chunk nor the extended wave format description.

A3.2 Fact Chunk
This chunk stores file-dependent information about the contents of the WAVE file. It currently

Broadcast Wave Format Specification Tech 3285 v2

20

specifies the length of the file in samples.

[EBU Note: See Section A2.5]

A3.3 WAVE Format Extension
The extended wave format structure added to the <fmt-ck> is used to define all non-PCM format
wave data, and is described as follows. The general extended waveform format structure is used
for all non-PCM formats.

typedef struct waveformat_extended_tag {

 WORD wFormatTag; /* format type */

 WORD nChannels; /* number of channels (i.e. mono, stereo...) */

 DWORD nSamplesPerSec; /* sample rate */

 DWORD nAvgBytesPerSec; /* for buffer estimation */

 WORD nBlockAlign; /* block size of data */

 WORD wBitsPerSample; /* Number of bits per sample of mono data */

 WORD cbSize; /* The count in bytes of the extra size */

} WAVEFORMATEX;

 Field Notes

wFormatTag Defines the type of WAVE file.

nChannels Number of channels in the wave, 1 for mono, 2 for stereo

nSamplesPerSec Frequency of the sample rate of the wave file. This should be 48000 or
44100 etc. This rate is also used by the sample size entry in the fact
chunk to determine the length in time of the data.

nAvgBytesPerSec Average data rate. Playback software can estimate the buffer size using
the <nAvgBytesPerSec> value.

nBlockAlign The block alignment (in bytes) of the data in <data-ck>. Playback
software needs to process a multiple of <nBlockAlign> bytes of data at
a time, so that the value of <nBlockAlign> can be used for buffer
alignment.

wBitsPerSample This is the number of bits per sample per channel data. Each channel is
assumed to have the same sample resolution. If this field is not needed,
then it should be set to zero.

cbSize The size in bytes of the extra information in the WAVE format header
not including the size of the WAVEFORMATEX structure.

[EBU Note: the fields following the <cbSize> field contain specific information needed for the
WAVE format defined in the field <wFormatTag>. Any WAVE formats that can be
used in the BWF are specified in individual Supplements to this document,
published by the EBU.]

	BWF Version 0
	BWF Version 1
	BWF Version 2
	1. Introduction
	1.1 Version compatibility

	2. Broadcast Wave Format File
	2.1 Contents of a Broadcast Wave Format file
	2.2 Existing Chunks defined as part of the RIFF standard
	2.3 Broadcast Audio Extension Chunk
	2.4 Treatment of Loudness Parameters
	Examples

	2.5 Other information specific to applications

	3. References
	Further reading

	A1. Waveform Audio File Format (WAVE)
	A1.1 WAVE Format Chunk
	A1.2 WAVE Format Categories

	A2. Pulse Code Modulation (PCM) Format
	A2.1 Data Packing for PCM WAVE Files
	A2.2 Data Format of the Samples
	A2.3 Examples of PCM WAVE Files
	A2.4 Storage of WAVE Data
	A2.5 Fact Chunk
	A2.6 Other optional Chunks

	A3. Other WAVE Types
	A3.1 General information
	A3.2 Fact Chunk
	A3.3 WAVE Format Extension

