
CONTENT MANAGEMENT
Pascal Dreer
swissinfo/Swiss Radio International

A news and information portal in nine languages ... streaming audio/video over the
Internet ... content management systems ... data broadcasting ... data services for
mobile phones ... a geographical information system …

The changes have come thick and fast at swissinfo/Swiss Radio International over the
past few years, with the introduction of a host of new services and applications. A
traditional shortwave broadcaster has now turned into a multimedia venture, as
described in this article.

Introduction / challenges
Swissinfo/Swiss Radio International (SRI) is an enterprise of the Swiss Broadcasting Corporation (SBC) �
SRG SSR idée suisse [1] � and is mandated to deliver news and information to Swiss expatriates as well as
anybody else in the world who is interested in Switzerland. While continuing to broadcast radio programmes
in the shortwave bands and by satellite, the Internet has become the main focus of our activities. According to
our strategy, the analogue shortwave broadcasting will gradually be reduced until the end of 2004. However,
swissinfo/SRI will continue to broadcast radio programmes by satellite (e.g. WorldSpace) and is watching the
developments in digital shortwave systems (e.g. Digital Radio Mondiale � DRM).

The news and information portal of swissinfo/SRI � swissinfo.org (see Fig. 1) � has been available on the
Internet since 1998. One challenge, besides building up the editorial know-how to produce multimedia con-

Content
Managing multimedia

for the Internet

Abbreviations

A/V Audio / Video (Visual)

AMS Asset Management System

CMS Content Management System

CSS Cascading Style Sheets

CSV Comma-Separated Values

DB DataBase

FTP File Transfer Protocol

GUI Graphical User Interface

HTML HyperText Markup Language

JSP Java Server Pages

JSTL Java Standard Tag Library

LDAP Lightweight Directory Access Protocol

NAS Network-Attached Storage

NFS Network File System

PDA Personal Digital Assistant

SBC Swiss Broadcasting Corporation

SRI Swiss Radio International

SSJS Server-Side JavaScript

SSR Société Suisse de Radiodiffusion et
Télévision

TSR Télévision Suisse Romande

WAP Wireless Application Protocol

WML Wireless Markup Language

XML Extensible Markup Language
EBU TECHNICAL REVIEW – January 2003 1 / 8
P. Dreer

CONTENT MANAGEMENT
tent (text, images, audio and video), was to come up with a system that could handle multimedia information
to produce attractive-looking web pages.

We developed a system called XOBIX (pronounced �zobix�) to achieve those goals. As a measure of our suc-
cess, XOBIX now produces web sites not only for swissinfo, but also for many of the SBC�s domestic radio
and TV stations.

Our approach
Back in 1998 there were hardly any Content Management Systems (CMSs) available that met the needs of a
media enterprise with fast-changing multimedia content. Most systems only offered management of static
web pages. This was not what we were looking for. We wanted to be as flexible as possible and were already
thinking about distributing data (content) to mobile devices such as wireless application protocol (WAP)
phones or personal digital assistants (PDAs). Another important issue was an �easy-to-use� GUI, since our
journalists would feed the system by themselves. Other goals were: (i) the ability to handle multilingual con-
tent (even script languages such as Arabic or Japanese), (ii) the automated import of data feeds and (iii) the
ability to use only a simple web browser in order to work with the CMS. So we came up with our own special-
ized content management system, designed for our media needs.

The publishing workflow (see
Fig. 2) normally starts with the
input of content. This can be done
either manually (by our journal-
ists) or can be automated (through
news agencies). The second step
includes putting content together
until a multimedia story (or any
type of information) is created and
scheduled to be online (referred to
as content management). Usually
the journalist�s work stops here.

The layout definition includes the
creation and modification of the
website�s layout (not the content)
and is normally done by web-pub-
lishers and web-designers. Once
the basic layout has been defined, only minor changes need to be made. However, it is also the web-publishers�

Figure 1
The home pages of www.swissinfo.org (left) and www.tsr.ch (right)

Manual
input

Content
input

Content
management

Layout
management

Content
output

Agency
newsfeed

A/V
encoding

A/V
editing

Building
story

Layout
definition

Website
A

Website
B

Figure 2
Publishing workflow
EBU TECHNICAL REVIEW – January 2003 2 / 8
P. Dreer

http://www.swissinfo.org
http://www.tsr.ch

CONTENT MANAGEMENT
job to set up new pages for special occasions (in-depth features or dossiers) and to include additional services
when required. There is one web-publisher for each language version at swissinfo/SRI.

During the last step, the content is usually rendered into HyperText Markup Language (HTML) according to
the defined layout (website design). Of course, this step depends on the actual distribution channel and device.
In the case of a WAP mobile phone, the content (text only) is rendered into WML instead of HTML. Content
can also be exported into XML and other formats.

Separating the content and layout
From the beginning it was quite
clear that we had to separate the
content and layout in order to pur-
sue our �any device � any distribu-
tion channel� philosophy (see
Fig. 3). It was also clear that all
the content should be stored in a
database system and that any out-
put would be generated dynami-
cally (on the fly). However, large
pieces of data, such as images,
audio and video clips, would be
put on dedicated storage servers.

Another important requirement
was the simple sharing of multime-
dia elements among different web-
sites. Once data was stored in the
database, it could either be used on
the Internet or on any other device
that allows the information to be
displayed correctly. From a con-
ceptual point of view, the database
is just a huge container where data
is stored in a structured form and is
only separated logically. Every piece of data always has an attached source-identification tag. Depending on
the definable access rights, applications can use data from a certain source or not.

Dealing with the content
There are two ways to put content into the system.
One way is through mostly-automated applications.
Data feeds come in various formats such as CSV or
XML, or as a serial dataflow. The import module nor-
malizes the data according to our internal data struc-
ture. This way we acquire data from news agencies, as
well as reports on weather, financial markets, traffic
and so on. Usually the data come via FTP (over the
Internet) or on serial lines. Automatically-recorded
audio and video from radio and TV programmes are
imported in a similar way.

In contrast, the content is entered manually. The
browser-based Content Tool (see Fig. 4) allows jour-

Storage
system

wap.
swissinfo.org

www.
swissinfo.org

www.
tsr.ch

Content Layout

Database &
application logic

Layout tool
(webpublisher)

Manual:
– Content tool
 (journalists)
– Applications

Automated:
– Financial data
– Reuters
– Meteo

Images
audio, video

Figure 3
Separated content / layout — multiple sites

Figure 4
Building a story with the Content Tool
EBU TECHNICAL REVIEW – January 2003 3 / 8
P. Dreer

CONTENT MANAGEMENT
nalists to upload multimedia elements (images, audio, video) or to browse through automatically-uploaded
content feeds. The next task would be to compose a story by typing text and adding �any number� of multime-
dia elements to that story. Besides images, audio and video, a story can also feature related links, quotes, key
facts, etc. Once the story is complete, it can be scheduled to go online in one or many sections and can appear
anywhere in the story list according to the priority that is attached to it. A preview function shows a story as it
would appear online.

Every tool can be accessed with a personal user account. The access rights to any content (create, read, mod-
ify and delete) are individually granted. For example, a user may be allowed to upload images but not to write
the stories.

The Video Edit application (which can also be used for audio) is part of the Content Tool and enables segmen-
tation of the video clips (see Fig. 5). Newscasts are normally encoded and stored as complete video clips (cur-
rently in RealVideo format only). A few seconds after the encoding is finished, clips will automatically be
available in the Video Edit application, where a user can cut the broadcast logically into news segments and
label them accordingly.

Building the layout
As already mentioned, the journalist does not
have to bother with any HTML coding or
with the layout of web pages (or of any other
output device). This is done automatically
by the rendering application, which applies
the layout that was defined with the
Layout Tool. Unlike the Content Tool, users
of the Layout Tool need to understand
HTML, CSS and JSTL in order to get the
most out of it.

Typically, a website consists of numerous
pages which, in our case, are labelled by
unique numbers. Fig. 6 shows the English
version of swissinfo�s front page with the
number 100. A page is made up of one or
several modules. A page with modules can
also form a template that can be part of a
page again.

The modules are implemented in Java.
Users of the Layout Tool can choose from a

Figure 5
Video editing through a web browser

Figure 6
Swissinfo’s English front page within the Layout Tool
EBU TECHNICAL REVIEW – January 2003 4 / 8
P. Dreer

CONTENT MANAGEMENT
basic set of modules and can customize them through various parameters. For example, a weather module
offers a choice of different weather locations, and styles that the information can be shown in. Whenever a
new type of data is added to the system, a corresponding module has to be programmed.

However, a web-publisher can also directly access data from the database by using Java Tags (JSTL) and
HTML. JSTL [2][3] offers variables, simple conditional logic and loops to output data. We defined about
twenty-five JSTL objects which the web-publishers can use to build their own reusable templates. Table 1
shows the properties of the audio object. To get more information about an audio clip (e.g., what codec, bit-
rate), one would have to query the �audio.media�, which again returns a �medium� object (the least common
denominator of audio, video, or image).

The code fragment on the next page (a part of the story display template) fetches all the audio clips attached to
a particular story (if there are any) and displays them with the proper audio icon and clip title as a link (see
Fig. 7). The interaction with the database is hidden in the audio-object, of which only the web-publishers need
to know the properties.

Table 1
Properties of the audio JSTL object

What? Name Returns

The audio's unique identifier audio.id Text

The audio's object type audio.objectType Text:
“audio”

The audio's language audio.language Object:

language

The audio's media audio.media Collection:
medium

The audio's title, used for captions audio.title Text

The audio's full text, used for a description audio.fullText Text

The audio's subjects, which help

to put it in context or classify it

audio.subjects Collection:

subject

The geographical points where the audio
was recorded and to which it refers.

audio.geoPoints Collection:

geoPoint

The organization or company that origi-
nated the audio

audio.companySource Object:

source

The department within “companySource”
that originated the audio

audio.departmentSource Object:

source

The name of the person who created the
audio – the producer, the musician or who-
ever

audio.author Object:

person

A still image that can be used to accompany
the audio

audio.image Object:

image

The icon used on a web page to show that
something is an audio item

audio.icon Object:

image
EBU TECHNICAL REVIEW – January 2003 5 / 8
P. Dreer

CONTENT MANAGEMENT

Fig. 7 shows (underneath the title �Related Items�) two links to audio clips which were produced by the
HTML / JSTL code above.

Panel 1 — HTML/JSTL code fragment to display audio elements

<%@ taglib prefix=“c” uri=“http://java.sun.com/jstl/core” %>
<%--

--%>

<%-- Get the icon --%>
<c:forEach var=“medium” items=“${audio.icon.media}”>

<c:set var=“audioIconMedium” value=“${medium}”/>
</c:forEach>

<%-- Get the title, defaulting to the audio's title --%>
<c:set var=“title” value=“${audio.title}”/>
<c:if test=“${! empty param.title}”>

<c:set var=“title” value=“${param.title}”/>
</c:if>

<%-- Get the audio's medium --%>
<c:forEach var=“medium” items=“${audio.media}”>

<c:set var=“audioMedium” value=“${medium}”/>
</c:forEach>

<c:choose>
<c:when test=“${(param.type == ‘storyDetail’) || (param.type == ‘topStory’)}”>

<tr>
<td valign=“top”><a href=“javascript:openAudio(<c:out value=“${audio.id}”/
>);”>

<img src=“<c:out value=“${audioIconMedium.file.url}”/>”
alt=“<c:out value=“${audio.icon.title}”/>” border=“0”
width=“<c:out value=“${audioIconMedium.width}”/>”
height=“<c:out value=“${audioIconMedium.height}”/>”></td>

<td valign=“top” width=“100%”>
<div class=“s54”>
<a href=“javascript:openAudio(<c:out value=“${audio.id}”/>);”><c:out

value=“${audio.title}” escapeXml=“false”/>
</div>

</td>
</tr>

</c:when>
</c:choose>

This template requires that the parameter “audio” has been set to the audio
object.
So before the import, you need to set the following:
<c:set var=“audio” value=“${...}” scope=“request”/>

The template takes the following parameters:

<c:param name=“type” value=“storyDe-
tail”/>

Show the audio formatted for a
story detail page

<c:param name=“type” value=“topStory”/> Show the audio formatted for a top
story page

<c:param name=“title” value=“...”/> Show another title for this audio

<c:param name=“fullText” value=“...”/> Show a full text paragraph for this
audio
EBU TECHNICAL REVIEW – January 2003 6 / 8
P. Dreer

CONTENT MANAGEMENT
System
architecture
For simplicity, the name XOBIX is
commonly used for all CMS-
related tools developed at swiss-
info/SRI. The first system configu-
ration was built around an Informix
database and Netscape�s Enter-
prise web-server with Server-Side
Java-Script (SSJS) technology.
Unfortunately, SSJS never really
became popular and eventually
vanished.

Some parts of XOBIX, notably the
Content Tool, are still running with
SSJS. Most other parts were
migrated to a common combina-
tion of Apache web-server and the
Java-based Jakarta/Tomcat appli-
cation-server [4]. Due to some
performance and stability prob-
lems with the Informix database, we recently decided to undertake a migration to Oracle. Most applications
run on Sun Enterprise servers using Sun�s Solaris operating system.

Since 1998, the server infrastructure has grown from three systems to dozens of servers in order to cope with
the steadily-increasing performance and availability. However, a lot of attention was also paid to integrating
the existing applications (e.g., our Dalet Newsroom system). Fig. 8 illustrates a simplified view of the various

components that make up the
entire XOBIX system.

Besides the database, web and
application servers, the storage
system also plays a crucial role
as a centralized repository for all
media content (images, audio
and video). An EMC NAS sys-
tem was chosen that shares its
data via NFS with all the other
servers.

Another convenient feature for
XOBIX users (whether journal-
ists or web-publishers) is the
Directory Server (LDAP). The
LDAP system automatically syn-
chronizes (one-way only) all
Microsoft Windows accounts to
XOBIX. Therefore, users have
to remember only one username /
password for both systems.

Some statistics regarding the
XOBIX system are given in
Table 2.

Figure 7
Actual output produced by the HTML/JSTL code

A/V
encoding

Pu
b

lic
 A

cc
es

s

LDAP
server

Mail

Import,
export

A/V
streaming

Web
server

Storage
system

Database
server

Application
server

Content/layout tools

Audio/video sources

Figure 8
Simplified XOBIX architecture
EBU TECHNICAL REVIEW – January 2003 7 / 8
P. Dreer

CONTENT MANAGEMENT
Conclusions and outlook
XOBIX is a product resulting from swissinfo/SRI�s need to develop a comprehensive publishing system for its
own online activities. The goal was to come up with a system that suits the needs of a multimedia-oriented
broadcaster that deals with text, images, audio and video. During the past three years, the system has found its
way to several radio and TV studios within the SBC group.

These days, websites are also supposed to be up and running 7 x 24h without any interruption. Therefore, we
put some emphasis on the availability issue by increasing the redundancy and performance. Load balancing
systems (layer 4-7 switches) and cache engines (reverse proxy servers) are currently installed to deal with that
problem.

We are continually extending the system by adding new functionality. Now in the pipeline is a personalization
module, so users can easily build their own, personal, news web page. With a browser-based image-editing
tool, users can cut their images directly in XOBIX, and so we can save on Adobe Photoshop installations.
Another important issue is the better workflow support. A comprehensive mechanism for tracking the ele-
ments, until they finally show up on a user�s web browser, has not yet been implemented.

Bibliography
[1] swissinfo/SRI Fact Sheet

http://www.srg-ssr.ch/en/radio/sri/en_srifact.html

[2] Shawn Bayern: JSTL in Action
Manning Pubns Co, 2002.
http://www.jstlbook.com

[3] JSTL reference website
http://java.sun.com/products/jsp/jstl/

[4] Jakarta/Tomcat
http://jakarta.apache.org

Table 2
System figures (as of October 2002)

Number of stored story and text elements (DB)
Number of stored video clips (DB)
Number of stored audio clips (DB)
Amount of audio- and video clips (storage)
Daily inflow of new audio clips (storage)
Daily inflow of new video clips (storage)
Daily number of new incoming multimedia elements

> 438’000
> 83’000
> 32’000
> 600 GB
> 150 MB
> 450 MB
> 1000

Pascal Dreer graduated in 1995 with an MSc in Industrial and Systems Engineering
from Ohio University in Athens, USA. He also holds a BSc in Computer Science from the
College of Engineering HTL in Berne, Switzerland. Since 1996, he has been with the
SRG SSR idée suisse, currently as Head of Information Technology at swissinfo/Swiss
Radio International.

At swissinfo/Swiss Radio International, he developed and implemented its first web-
based CMS (named XOBIX) in 1998. Besides being used in other SRG SSR web projects,
XOBIX’s architecture was built around the multilingual news and information portal
swissinfo.org, which was launched in 1999.

Contact: pascal.dreer@swissinfo.ch
EBU TECHNICAL REVIEW – January 2003 8 / 8
P. Dreer

mailto:pascal.dreer@swissinfo.ch
http://www.srg-ssr.ch/en/radio/sri/en_srifact.html
http://www.jstlbook.com
http://java.sun.com/products/jsp/jstl/
http://jakarta.apache.org

