
An Open-source Software Toolkit for Professional Media
over IP (ST 2110 and more)

Ievgen Kostiukevych

Willem Vermost
European Broadcasting Union

Geneva, Switzerland
kostiukevych@ebu.ch

vermost@ebu.ch

Pedro Ferreira

Bisect
Porto, Portugal
pedro@bisect.pt

Abstract - As the broadcast industry is on the eve of

replacing SDI with IP for critical live applications, new

ways of measuring, monitoring and fault detection need to

be explored. This paper breaks down certain technical

aspects of a key document out of the SMPTE ST 2110 suite,

the ST 2110-21. It also explains the challenges of building a

software-based generic toolkit to measure some basic

characteristics. A practical example of an open source

software-based ST 2110 implementation is provided. Its

functionalities to decode and generate streams, measure

and validate stream parameters according to ST 2110-21

requirements are explained.

INTRODUCTION

The publishing of the SMPTE ST 2110 suite of standards

signals the beginning of a new era in TV broadcasting and

production industries. It will have major influence and will

dictate new requirements to both the TV/Radio and IT

worlds.

Traditionally we tend to separate broadcast engineering

and IT/network engineering. SMPTE ST 2110 takes the best

from both worlds and offers us exciting new possibilities in

flexibility, automation, virtualization, etc.

However, as everything new comes with a price, the

new SMPTE standard requires a specific skill set and

careful planning of aspects we were not aware of before.

The standard itself contains certain models and

calculations that are not so easy to grasp at a glance.

During extensive analysis of the SMPTE ST 2110 suite

of standards, and ST 2110-21 in particular, the authors came

to the conclusion that certain solutions are required in order

to properly examine and validate ST 2110 streams.

Initial internal tools realized in the form of Python

scripts started to evolve into a software platform that

enables precise validation, decoding and generation of

media streams, compatible with ST 2110.

The purpose of this paper is to help the reader to

understand the traffic shaping models offered in the ST

2110-21 standard, evaluate the challenges that one needs to

overcome when developing, or selecting a solution in

compliance with the SMPTE ST 2110 suite. In order to do

so, the paper describes a toolset developed within the EBU

LIST (Live IP Software Toolkit) project.

The EBU LIST toolkit is currently being developed as

open-source software written in C++.

This paper offers an overview of solutions currently

implemented and gives an overview of a direction of future

project development.

By using the theoretical and practical approaches

described in this paper, a reader can easily apply the toolkit

and techniques to understand and analyze the traffic shaping

principles set out in SMPTE ST 2110-21.

TRAFFIC SHAPING AND DELIVERY TIMING

Why is there a traffic model?

The traffic model proposed in SMPTE ST 2110-21 [1]

specifies a timing model for senders and receivers of video

RTP streams. The reason to constrain the traffic shape or

packet delay variation is twofold: PDV could lead to

increased latency and, even worse, dropped packets.

In a perfect streamed media world, all packets arrive

equally spaced at the receiver side. In other words, the

average bandwidth is equal to the bandwidth measured on a

microscopic scale (see Figure 1 below). In reality senders

do not create perfect streams and network operations can

introduce packet delay variation.

The implementation of a sender plays an important

role. The closer your sender operates to the physical

hardware, the easier it is to create perfectly shaped traffic

(e.g. FPGA based implementations). If the sender is just a

piece of software installed on an operating system, it is

abstracted from the driver of the network card and therefore

has less control over the traffic shape. The operating system

also has to handle and prioritize other tasks besides the

video application. In a virtualized system, this control is

even further diluted. The network components can introduce

latency due to multiple issues, the serialization and

deserialization of packets, for example.

FIGURE 1: BANDWIDTH USAGE ON MICROSCOPIC SCALE.

The result of increased latency is easy to grasp. Some

packets arrive early and stack closely, and some other (late)

packets have a lot more space between them. In order to

recreate the video stream, one needs to wait for these late

packets. Techniques to cope with these imperfections are

based upon the use of buffering and so-called watermark

levels. These are widely known and implemented in the IT

industry. However, latency is something we don’t want to

perceive in our live media production facility.

For the application of IP networks to professional

media it must be realised that multiple streams are the norm.

The system needs to be capable of handling many streams at

the same time, and be capable of synchronizing them when

needed.

WHAT DOES THE MODEL DESCRIBE?

I. Leaky buckets

The model mainly describes two virtual leaky buckets.

These buckets are defined by the number of packets they

can store and the speed at which the packets leave the

bucket (drain rate).

The first leaky bucket is called the “network

compatibility model”. It is located at the output of the

sender, prior to any network-induced delivery impairments.

(see Figure 2 below). This model measures the packet delay

variation introduced by a sender. If the number of packets

exceeds the CMAX value at a given point in time (CINST), the

test fails. The packets drain out of the leaky bucket at a rate

of 1/TDRAIN (See Figure 2)

FIGURE 2: CMAX LEAKY BUCKET.

The “virtual receiver buffer model” looks similar to the

“network compatibility model”, except for the fact that its

drain rate is based upon a receiver packet read schedule.

This schedule describes the timely fashion the receiver

reads the packets out of the receiving buffer, potentially

synchronized to the video transmission datum (TVD) (See

Figure 3).

FIGURE 3: VRX LEAKY BUCKET.

II. Packet Read Schedules

There are two different read schedules described in the

SMPTE ST 2110-21 standard.

The linear packet read schedule defines a sequence of

packets which are equally spaced throughout the frame

period TFRAME. From a network perspective this schedule is

optimal. It consumes the least possible bandwidth and is

easy to measure.

The gapped packet read schedule is modelled as SDI,

meaning that data packets are sent equally spaced

throughout the active field or frame interval. During the

vertical blanking of the SDI signal, no packets are sent. This

creates a gap between the last packet of the previous frame

or field and the first packet of the next one. From a network

perspective the schedule uses a bit more bandwidth on a

microscopic scale (see Figure 4 below).

The RTP header has a field labeled as Marker bit. For

progressive scan video, the marker bit shall be set to 1 to

denote when this RTP packet is the last packet carrying

video essence data for a video frame. For interlaced video,

the marker bit shall be set to 1 to denote when this RTP

packet is the last packet carrying video essence data for a

video field. The marker bit shall be set to 0 for all other

packets [2].

FIGURE 4: LINEAR VS. GAPPED PACKET READ SCHEDULES.

III. Senders

The standard defines narrow (N) and wide (W) senders.

Both types constrain the maximum values of the leaky

bucket buffer models relative to the used video format.

Since we have a linear packet read schedule, there is a well-

defined Narrow Linear (NL) sender. The table shows the

calculated CMAX and VRXFULL values valid for 720p60,

1080i25 and 1080p50 (see Table 1).

Narrow senders will typically be FPGA-based

implementations. This is an extremely tight value and

probably impossible to achieve in a purely software, non-

hardware assisted, product. To accommodate the

introduction of software-based senders, as this is the future

according to the JT-NM roadmap for open interoperability,

the wide sender was added to the specifications.

Type CMAX VRXFULL

N 4 8

NL 4 8

W 16 720

TABLE 1: CALCULATED CMAX AND VRXFULL VALUES.

IV. Receivers

Practical receivers ought to accommodate, for a reasonable

amount of accumulated packet arrival jitter and delay, over

and above the specification in the traffic profile. Three

receivers are defined: Narrow Synchronous (N), Wide

Synchronous (W) and Asynchronous Receivers (A).

The narrow receiver could be equipped with a shallow

receiving buffer as it should not be capable of receiving

type NL and type W senders. This is probably the case for

many FPGA based implementations. The following matrix

reveals what receiver type is compatible with what sender

type (see Table 2).

Senders
Receivers

 N W A

N yes yes yes

NL no yes yes

W no yes yes

TABLE 2: SENDER – RECEIVER COMPATIBILITY MATRIX.

HOW TO MEASURE PACKET PACING

To measure whether a stream is compliant or not with the

network compatibility model one needs to calculate CPEAK,

the maximum value a given stream produces. If CPEAK >

CMAX the given RTP video stream is considered as not

compliant with the specifications defined in the standard. It

gives us an indication of how well or badly the sender

behaves on the network. Therefore, two aspects need to be

deduced for the RTP video stream: the actual time the

packet is sent out of the sender and the drain rate. The

following description of the method shows some Python

code snippets to clarify the explanation.

The complete and fully working Python script is

available as an open source project on GitHub [3].

python cfull_analysis.py -c
[CAPTURE_FILE.cap] -g [MULTICAST_IP] -p
[UDP_PORT]

I. The packet timestamp

In order to retrieve a usable / sensible packet timestamp, the

device capturing the stream needs to be a high-precision

capturing device (nanosecond precision). It should be

capturing the stream as close to the sender as possible.

When analyzing a stream capture using Wireshark, this

packet timestamp can be found on the frame level, labelled

as epoch time.

packettime = Decimal(pkt.sniff_timestamp)

II. The Drain Rate

The drain rate isn’t as easy to observe as the packet

timestamp; it needs to be calculated (1).

 TDRAIN = (TFRAME / NPACKETS) * (1 / β) (1)

Where:

 TFRAME is the time period between consecutive frames

of video.

 NPACKETS is the number of packets per frame of video.

 β is the scaling factor = 1.1

III. The number of RTP packets per frame,
NPACKETS

Without diving into further details of the actual packet, a

simplistic version would be to look for a flagged RTP

marker bit and to store the RTP sequence number of this

packet. Next, scan for the following flagged RTP marker

bit, store this packets’ sequence number and subtract it from

the previously stored RTP sequence number. That is

NPACKETS.

The RTP sequence number rolls over to zero rather

frequently as it is a 16 bit number. The modulo operator is

your best friend in coping with this challenge. A careful

reader might notice that this might be the amount of packets

for a frame or a field. In the case of a field, this result

should be multiplied by 2.

def frame_len(capture):
 # To calculate Npackets, you need to count the
number of packets between two rtp.markers== 1 flags.
 # This is as easy as looking at 2 rtp.markers == 1
packets and subtracting their rtp.sequence numbers.
 # The exception that will occur is that the packet
sequence number rotates. Modulo is then your friend!

 first_frame = None
 for pkt in capture:
 if pkt.rtp.marker == '1':
 if not first_frame:
 first_frame = int(pkt.rtp.seq)
 else:
 return (int(pkt.rtp.seq) - first_frame)
% 65536
 return None

IV. The frame time period, TFRAME

To calculate the framerate (1/TFRAME) of a given capture,

one needs to look at three consequent RTP timestamp

values. The frame periods (difference between 90 kHz

timestamps) might not appear constant. For example

60/1.001 Hz frame periods effectively alternate between

increments of 1501 and 1502 ticks of the 90 kHz clock.

def frame_rate(capture):
 rtp_timestamp = []
 for pkt in capture:
 if pkt.rtp.marker == '1':
 if len(rtp_timestamp) < 3:

 rtp_timestamp.append(int(pkt.rtp.timestamp))
 else:
 frame_rate_c = Decimal(RTP_CLOCK /
 (((rtp_timestamp[2] -
 rtp_timestamp[1])
 % RTP_TIMESTAMP_BIT_DEPTH +
 (rtp_timestamp[1] -
 rtp_timestamp[0])
 % RTP_TIMESTAMP_BIT_DEPTH) / 2))
 return frame_rate_c
 return None

As the reader may have noticed, this again might be the

result for a frame or a field of video. In the case of a field,

the result should be multiplied by 2. The good news is that

these two values are compensated for in the equation (2)

for TDRAIN.

 TDRAIN = (2*TFRAME / 2*NPACKETS) * (1 / β) (2)

We actually don’t need to know whether we are dealing

with fields or frames of video to calculate CPEAK.

V. The algorithm to calculate CPEAK

We record the initial time of the first packet of the RTP

video stream. This is the first packet that drops into the

virtual leaky bucket (CINST = 1). As the following packet

arrives, the packet time of the previous packet will be

subtracted from the packet time of the current packet and

the result divided by TDRAIN. The integer result of the

previous calculation gives us the number of packets that are

drained between the previous and the current packet

(packets_drained).

CINST = CINST - packets_drained

If CPEAK < CINST , then: CPEAK = CINST

EBU LIST - LIVE IP SOFTWARE TOOLKIT

I. Purpose

The major goal of the LIST project is the development of a

set of open source software tools to validate, play and

generate media compatible with ST 2110.

Regarding validation, LIST is able to read network traffic

captured as files by a high-precision hardware device and

verify the conformance of the packets’ headers, payload and

the timings.

In terms of media playback, LIST plays audio, video

and data contained in capture files, allowing operators to

check the contents manually. If it is run on capable enough

hardware, LIST can play the streams from the network in

real-time.

LIST is also able to generate signals that can serve as a

reference for testing sink devices. This behaviour is akin to

an SDI signal generator.

Additionally, and since PTP conformance is such a

critical factor for the quality of Live IP implementations,

LIST provides a framework for analyzing PTP packets.

II. Why develop a new library?

There are several open source projects that are able to play

and generate RTP-based media streams. Among others, a

few notable examples are FFmpeg [4] and GStreamer [5],

both widely used in broadcasting environments. The

availability of these projects raises the question of why to

develop a new toolkit rather than collaborating on the

extension of any of those open source offerings.

There are several reasons for us having decided to

develop our own library. Firstly, the fact that one of the

major goals of the project is education. We want to help

people learn how to implement support for those protocols

and we want them to be the focal point of the library.

Extending other implementations would certainly be

valuable but anyone reading the source code would

probably miss the forest for the trees. The amount of “glue”

code needed and the additional boilerplate would make the

learning task more difficult.

We did not, however, dismiss the importance of open

source projects. In fact, we provide sample applications to

show how to integrate them with LIST, leveraging, for

instance, their ability to decode most media formats,

allowing users to stream media decoded by, e.g. FFmpeg

via LIST. Plus, LIST uses open source projects to provide

horizontal functionality, for instance, memory management,

logging or text formatting.

Another fundamental reason for deciding to develop

our own implementation of the network and protocol

handling code was efficiency. Processing Live IP media

pushes the requirements of general purpose hardware to its

limits. Most of the open source projects, although they

provide RTP processing and generation, are geared towards

applications with much less stringent requirements and

usually for formats and bit rates used for distribution, as

opposed to uncompressed, full resolution audio and video.

We elaborate further on this later on in this paper.

III. Platforms and Languages

LIST aims at helping to develop software for both server

and desktop. Hence the goal was to support Linux,

Microsoft Windows and Apple macOS. However, the code

should be easy to port to other platforms, if required.

Given the performance requirements, the options for

programming languages ranged from the established C and

C++, to newer offering such as Go [6], Rust [7] or D [8].

Despite some advantages any of the latter could offer,

we immediately dismissed them for several reasons, chief

amongst them being the fact that they are not as well known

by the target audience as either C or C++. Additionally,

despite their efficiency when compared to other languages,

they are still not on a par with either C or C++.

Therefore, the choice was between C and C++. Many

open source projects are developed in C and claim to be

faster than an equivalent C++ implementation. However,

evidence shows that, given a modern enough compiler, C++

is at least as fast as C. Additionally, C++ is much more

expressive than C, providing higher level constructs, which

allowed us to create a simpler, cleaner and effective design.

Finally, there is a wealth of excellent C++ libraries that we

could use to build upon, such as boost [9], Microsoft’s C++

REST SDK [10], etc.

Given the evolution of the C++ language in recent

years [11], we decided to go to the bleeding edge and base

the implementation on C++17, which gives us the ability to

express the code more clearly without losing efficiency.

Despite the fact that it is very recent, there is excellent

support in the major compilers [12], [13], [14], [15] which

gave us enough confidence to aim for it.

IV. Structure

LIST is divided into four major parts: Libraries, Unit Tests,

Demo Applications, and End-User Applications. It is

complemented by third-party libraries and built using an

open source build system generator (see Figure 5).

FIGURE 5: LIST BLOCK DIAGRAM.

V. Libraries

The libraries are the modules that provide the core

functionality of the toolkit. This functionality includes, for

instance, receiving packets from the network or reading

them from a capture file, processing the RTP headers and

reassembling the video frames.

The services provided by the libraries are exposed via

C++ header files and are available for integration into

applications by linking these with the libraries.

As mentioned above, LIST leverages third-party

libraries for horizontal, non-core, functionality.

VI. Unit Tests

The unit tests verify that the behaviour of the libraries

matches the specification. These include black-box tests,

which test the libraries’ Application Programming

Interfaces (APIs), as well as white-box tests, which verify

that the internals of the libraries behave correctly. LIST

used the Catch2 framework [16] to assist in the

development of unit tests.

VII. Demo Applications

Demo applications are small programs, with a command

line interface and limited functionality. Their purpose is not

to be useful tools on their own (although they may be) but

rather to explain how parts of the library should be used by

other developers.

VIII. End-User Applications

End-User applications are the “user facing” aspect of LIST.

They are built on top of the LIST libraries and are full-

blown applications, including all the interface aspects

required for actual operational use.

The applications include, for instance, an application

for analyzing and visualizing live and previously captured

network data; a “signal generator” that is able to play

captured data as ST 2110 streams; an application for

receiving and displaying live streams.

IX. Third-party Libraries

LIST uses several third-party libraries, among which boost,

Microsoft’s C++ REST SDK [10], BIMO [17], spdlog [18]

and {fmt} [19].

X. Build System

C++ software needs to be compiled and, unfortunately, the

compilation process varies widely across platforms and

compilers. In order to minimize this complexity, LIST uses

CMake [20] to generate native make files or IDE projects,

as well as Conan [21] to automatically install required

dependencies. This makes the whole process of building

LIST extremely simple and robust.

XI. Performance

The major challenge we found during the development of

LIST was how to maximize efficiency. In fact, dealing with

streams of several gigabits per second, even with powerful

hardware, is not an easy task.

LIST performs very well, due to several factors:

 Memory Management. Memory copying and

dynamic memory allocation have always been

important reasons for systems to underperform. LIST

addresses these problems by reusing buffers in a way

that minimizes both copying and dynamic allocations,

using BIMO’s ability to share memory blocks

intelligently.

 Sequential Memory Access. Another factor that

causes applications to underperform is poor caching.

Current processors have main memory access

latencies that are several orders of magnitude higher

than when data is located in the processor cache.

LIST tries to maximize predictable memory access,

using data structures and algorithms that are cache-

friendly.

 Parallelization and Functional-style Programming.
LIST strives to use a pure functional style, almost

completely eradicating side-effects from its

processing pipelines. This style lends itself to simpler

parallelization, while also enhancing readability,

testability and correctness.

 Efficient Network I/O. LIST has a special purpose

Platform Adaptation Layer for network access. This

layer implements an asynchronous, OS Kernel-

friendly I/O model, minimizing memory copying and

kernel to user mode switching and leveraging the

most recent OS APIs for asynchronous I/O.

REFERENCES

[1] ST 2110-21:2017 - SMPTE Standard - Professional Media Over
Managed IP Networks: Traffic Shaping and Delivery Timing for

Video, http://ieeexplore.ieee.org/document/8165971/

[2] Internet Engineering Task Force (IETF) RFC 3550 RTP: A Transport
Protocol for Real-Time Applications,

https://www.ietf.org/rfc/rfc3550.txt

[3] EBU ST 2110 analyzer, https://github.com/ebu/smpte2110-analyzer

[4] FFmpeg, https://www.ffmpeg.org/

[5] GStreamer, https://gstreamer.freedesktop.org/

[6] The Go Programming Language, https://golang.org/

[7] The Rust Programming Language, https://www.rust-lang.org/

[8] The D Programming Language, https://dlang.org/

[9] boost, http://www.boost.org/

[10] The C++ REST SDK, https://github.com/Microsoft/cpprestsdk

[11] ISO, C++ Recent Milestones, https://isocpp.org/std/status

[12] C++ Standards Support in GCC, https://gcc.gnu.org/projects/cxx-
status.html

[13] C++ Support in Clang, https://clang.llvm.org/cxx_status.html

[14] Microsoft Visual C++ - Support For C++11/14/17 Features,
https://msdn.microsoft.com/en-us/library/hh567368.aspx

https://github.com/ebu/smpte2110-analyzer

[15] C++17 Features Supported by Intel® C++ Compiler,

https://software.intel.com/en-us/articles/c17-features-supported-by-
intel-c-compiler

[16] Catch2, https://github.com/catchorg/Catch2

[17] BISECT Media Core Library, https://github.com/pedro-alves-
ferreira/bimo

[18] spdlog, https://github.com/gabime/spdlog

[19] {fmt}, http://fmtlib.net/latest/index.html

[20] CMake, https://cmake.org/

[21] Conan C/C++ package manager, https://www.conan.io/

https://cmake.org/

