
STREAMING
Niels Laukens
VRT Medialab

The Internet and worldwide web are continuously in motion.  In the early days, pages
were pure text although still images were incorporated fairly quickly, followed by
moving pictures in the form of “Animated GIF” files.  True video only became
possible years later.

Nowadays, video playback is ubiquitous on the web, but a smooth playback
experience is not always guaranteed: long start-up times, inability to seek to an
arbitrary point and re-buffering interruptions are no exceptions.  In the last few years,
however, new delivery techniques have been developed to resolve these issues, in
particular “Adaptive Streaming” as described in this article.

To communicate over the Internet, one uses the Internet Protocol (IP), usually in association with the
Transmission Control Protocol (TCP).  IP is responsible for getting the packet across the network to
the required host.  TCP guarantees that all packets arrive undamaged in the correct order – if neces-
sary, reordering out-of-order packets and/or requesting a retransmit of lost packets.  This is essen-
tial for transmitting files reliably across the Internet, but these error-correcting powers come at a
cost.  TCP will refuse to release anything but the next packet, even if others are just waiting in its
buffer (this can happen for example when TCP is waiting for a retransmitted packet to arrive).  While
this is the desired behaviour when downloading a document, the playback of video and audio are
special in this sense: it is usually preferred to skip the missing packet and introduce a short audible
and/or visible glitch, as opposed to stalling the playback until the missing packet arrives.

The Real-time Transport Protocol (RTP) chooses not to use TCP’s error correction: it uses the User
Datagram Protocol (UDP) instead.  UDP only filters out damaged packets, but does not attempt any
error correction at all.  RTP is still one of the most popular formats for streaming audio and video,
especially in IP telephony (Voice over IP, VoIP) and the video contribution world.  Due to its lack of
error resilience, RTP is mostly used on managed, internal networks.  In addition, most firewalls con-
necting users to the Internet are configured not to allow UDP, and hence RTP traffic.

The Hyper Text Transfer Protocol (HTTP) is used to serve pretty much every website on the Inter-
net.  HTTP is allowed by the majority of firewalls, although sometimes a proxy server is enforced.
Therefore, this is a very attractive protocol to deliver items, including video, to a large audience.  The
simplest way to deliver video over HTTP is called HTTP downloading.  The multimedia file is simply
handled as any regular file and transmitted across the Internet with the error-correcting magic of
TCP.  Once the file has completely downloaded, it can be played – usually in a stand-alone player,
although a browser plug-in is also possible.  While this technique guarantees a completely seamless
playback at optimal quality, the user needs to wait until the file has completely downloaded before it
can be played.

Streaming
Adaptive

—  a brief tutorial
EBU TECHNICAL REVIEW – 2011 Q1 1 / 6
N. Laukens



STREAMING
A better user experience is
achieved by preparing the multi-
media file upfront.  These prepa-
rations move all information
required to start the playback to
the beginning of the file.  That
way, a smart client can start play-
back, even while the file is still
downloading!  There are no spe-
cial requirements on the server
side: it is still served as a regular
file.

This technique is called progres-
sive downloading.  Obviously,
the download should be fast
enough to stay ahead of the play-
back; otherwise the dreaded re-
buffering will happen.  In this sce-
nario, the user’s ability to seek to
an arbitrary time in the playback
is reduced: it is only possible to
seek to the part that has already
downloaded.

Of course, this limitation was
quickly overcome by a slightly
adapted variant, using a smarter
server that understands how the
multimedia file is structured inter-
nally.  In HTTP pseudo-streaming, clients can request a specific time interval to download.  Seek-

ing to your favourite scene thus becomes
possible without downloading the full movie.
However, once the client starts downloading, it
still downloads as fast as possible (as is the
case with all HTTP downloads), wasting a lot of
bandwidth when the video is not watched fully.
But even if the client or server would limit the
download speed to be “just fast enough”, there
are still issues.

All of the above techniques use a single “con-
versation” to transfer all required media data.
This causes problems when moving around:
when a smartphone moves out of range of a
Wi-Fi hotspot, it can automatically switch over
to a cellular data connection (UMTS, EDGE,
GPRS …).  This however causes all active
conversations to be interrupted.  They need to
be restarted on this new connection1.  On top
of that, this new cellular connection is very
likely to provide less bandwidth, possibly too
little to continue playback of the high-bitrate
video you started on Wi-Fi.

1. IP mobility allows conversations to be moved instead of restarted, but is hardly used in practice.

Streaming or downloading

There is a lot of debate over whether these techniques should be
called “streaming” or “downloading”. Especially in the view of rights
management, this is a very important distinction: usually broadcast-
ers are allowed to stream the content, but are not allowed to make
the content available for downloading.

For the most part, this is not a technical issue but a matter of defini-
tion:

 It is streaming if only the parts of the media that are actually
needed are transferred: in this sense, the adaptive streaming
techniques are rightfully named “streaming”.

 As soon as a media file is copied to the client, it’s downloading:
Since the HTTP protocol deals with files, the techniques
described should be called “adaptive downloading”.

 Streaming makes it impossible for a user to store a copy of the
media. This definition is useless: it’s always possible to store a
copy: just aim a camcorder at your screen!  It can be a useful
definition if it specifies how hard it must be to store a copy.

 The media is never stored (cached) on the client. This definition
also needs clarification: how long (or short) can it be stored?
Since most encoding algorithms reuse pieces of previous
frames, they need to store that frame for a limited time.  Surely
streaming should not be prevented from using Long-GoP for-
mats!

From a technical point of view, “streaming” is a defendable terminol-
ogy, but the legal department might disagree.

Internet

Figure 1
Requests are spread over the available edge servers.  
The initial request will be forwarded to the origin 
server.  Once the response is retrieved, it is stored in 
a caching server at the edge and passed on to the 
requesting client.  All subsequent requests for this 
object will be served from the cache.  The object is 
removed from the cache when it’s no longer valid (as 
specified by the origin server).  Valid objects may 
also be deleted by the cache management to free up 
space for more popular objects.
EBU TECHNICAL REVIEW – 2011 Q1 2 / 6
N. Laukens



STREAMING
This is where adaptive streaming steps in.  It combines a lot of the qualities of the aforementioned
protocols, while avoiding their pitfalls.  Although adaptive streaming techniques can run over a wide
variety of protocols, they typically run over HTTP, which gets them through most firewalls without
much hassle.  Using HTTP has even more benefits: caching functionality is built in to the core of the
protocol.  Every HTTP object contains a tag that specifies how long this object is valid: if it is
requested again during this time span, the saved copy may be used without contacting the original
server.  This can relieve the origin servers by spreading the load to the edges (proxy servers or spe-
cialized caching servers), as illustrated in Fig. 1.

On the server-side, using HTTP has an additional benefit: it’s a stateless protocol.  In a stateless
protocol, the server doesn’t store any persistent information about the client or its requests.  In other
words, once a request is handled, the server resets itself to its original state2.  This is very conven-
ient for load balancing: every request can be handled by any available server, without keeping track
of which server “owns” that particular client.

Adaptive streaming

From a server perspective, the basic principle behind adaptive streaming techniques is fairly simple:
provide the clients with a table of URLs.  Every URL points to a specific time interval (the columns) of
a specific quality (the rows) of the same content, as illustrated in Fig. 2.  All intelligence is imple-
mented in the client; the server can be any HTTP-compliant device serving regular files.

Once the client has downloaded the table of URLs, it needs to employ its knowledge of the client
system to select the appropriate URL to fetch next.  Obviously, the client should start playback of the
first time interval, but which quality should be used?  Usually, a client will start with the lowest avail-
able quality.  This will give the fastest start-up time.  During this first download, the available network
bandwidth can be estimated: e.g. the first chunk was 325 kB large and was downloaded in 1.3 sec-
onds; the network bandwidth is thus estimated to be 2 Mbit/s.  Clients then usually switch up to the
highest available quality within their network bandwidth.  Seeking to an arbitrary point is also possi-
ble: the client can calculate the corresponding time interval and request that segment right away.

2. If there is a need for persistent storage, it needs to be handled on top of HTTP.  Servers typically use a
database to store persistent information.

Figure 2
The media file is created in multiple qualities, here represented as rows.  It is also cut into time intervals (here 
represented by the columns) synchronously across the different qualities.  Every individual chunk is indi-
vidually addressable by the client.  This example uses fixed-size chunks, but that is not required.
EBU TECHNICAL REVIEW – 2011 Q1 3 / 6
N. Laukens



STREAMING
Implementations can use more metrics than just the bandwidth.  A client could detect the current
playout resolution.  That way a thumbnail player inside a web page could download the low-resolu-
tion version, even though the network bandwidth would allow a better quality, only switching to the
HD variant once the video is played at full screen.  Clients could also take the available CPU power
(or hardware support) into account, avoiding stuttering playback even if the bandwidth would allow a
higher bitrate.

To achieve this seamless playback and switching, there are obviously some requirements on the
individual chunks.  Since clients can zap in to an arbitrary chunk at an arbitrary quality, each and
every chunk must be completely self-contained.  Modern video encoding algorithms use “inter-frame
compression”: they reuse pieces of previous frames to construct the current frame, only transmitting
the differences.  Obviously, the receiver needs to have access to these previous frames.  Usually,
an “Intra frame” (I-frame) is inserted every now and then.  I-frames do not reference any previous
frame.  Hence, every chunk must start with an I-frame (i.e. they must start on a GoP boundary).  And
since the following chunk needs to start with an I-frame as well, a chunk will always end one frame
before an I-frame (i.e. at another GoP boundary).  The GoP length thus needs to be balanced:
longer GoPs allow higher compression, but slower switching.

The same story is true for the audio.  Audio is usually encoded by transforming a sequence of sam-
ples (e.g. AAC uses 2048 samples per block).  The chunk cuts can only happen on an integer multi-
ple of this block size.  Things get even more complicated when different qualities have different
frame rates (or sample rates in the case of audio).  Care must be taken that the chunk boundaries
align properly.

It is worth mentioning that the adap-
tive streaming protocols only define
the wire format (i.e. the bits and
bytes that are transmitted over the
network): they don't imply anything
on the server side.  They require that
every chunk must be addressable
individually.  This can be accom-
plished by having individual files for
every chunk, but this is not required.
In fact, Microsoft’s implementation
uses a single (prepared) file for the
full duration.  A server module picks
out the correct byte ranges to serve individual chunks to clients.  The protocols require every chunk
to be individually decodable, hence excluding SVC.  But servers may use SVC internally to conserve
disk capacity or backhaul bandwidth, and transcode when they output the chunks to the users.

SVC – Scalable Video Coding

In contrast to traditional encoding schemes, SVC produces a
bitstream that contains one or more subset-bitstreams.  These
subsets can be decoded individually, and represent a lower
quality (either in spatial resolution, in temporal resolution or in
compression artefacts).  SVC thus transmits a “base layer” and
one or more “enhancement layers”.  This conserves bandwidth
and/or storage requirements, if all qualities are needed.  For an
individual quality however, SVC typically requires 20% more
bits compared to a single-quality encoding, because of the
intermediate steps.

Abbreviations

3GPP 3rd Generation Partnership Project

AAC Advanced Audio Coding

CPU Central Processing Unit

EDGE Enhanced Data rates for GSM Evolution

F4V An open container format for delivering
synchronized audio and video streams

FMP4 (FFmpeg) MEncoder MPEG-4 video codec

GoP Group of Pictures

GPRS General Packet Radio Service

GSM Global System for Mobile communications

HTTP HyperText Transfer Protocol

IP Internet Protocol

IPTV Internet Protocol Televison

OIPF Open IPTV Forum

RTP Real-time Transport Protocol

SVC (MPEG-4) Scalable Video Coding

TCP Transmission Control Protocol

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunication
System

URL Uniform Resource Locator

VoIP Voice-over-IP

WMA (Microsoft) Windows Media Audio

XML eXtensible Markup Language
EBU TECHNICAL REVIEW – 2011 Q1 4 / 6
N. Laukens



STREAMING
Current implementations

There are currently three major players pushing their implementation: Microsoft, Apple and Adobe.
Microsoft has incorporated its “Smooth Streaming” into its Silverlight player.  Apple has implemented
“HTTP Adaptive Bitrate Streaming” in both its desktop products (since Mac OS X 10.6 Snow Leop-
ard) and its mobile products (since iOS 3).  Adobe uses its Flash player (v10.1 and up) to deliver
“HTTP Dynamic Streaming”.  Obviously, the different vendors each have their own implementation
but, surprisingly, they have enough in common to allow some clever reuse.

 Microsoft’s implementation3 uses an XML “Manifest” file to communicate the table of URLs to
the client.  The URLs are then formed by filling in a supplied template with the required parame-
ters.  Each chunk contains either audio or video material in a “fragmented MP4” container.
Audio and video are thus requested separately and can be switched to different qualities sepa-
rately.  The “fragmented MP4” format is, as the name implies, a variant of the ISO specification.
Although the current Silverlight player supports only H.264 and VC-1 video material, and AAC
and WMA audio material, the spec. itself is codec-agnostic.

 The Apple variant4 communicates the table of URLs by using a hierarchical text file called a
“Playlist”.  The top-level playlist contains the list of available qualities, each with their individual
sub-playlist.  This sub-playlist explicitly enumerates the individual URLs for each chunk.  These
chunks contain both audio and video in an MPEG-2 Transport Stream format, a well-known
format in the broadcast world.  Here, the specification also allows for any video and audio
codec, but current implementations are limited to H.264 video and AAC or MP3 audio.

 Adobe uses5 yet another XML format.  It has its own MP4 variant which also fragments the
metadata.  The Flash player only supports H.264 and VP6 video and AAC and MP3 audio.  As
is the case with the previous two, the spec. itself is codec-agnostic.

Besides these three “proprietary” implementations, several standards bodies are working on an
“open” standard:

 The 3GPP has joined forces with the OIPF and have defined6 their “Dynamic Adaptive
Streaming over HTTP”.  It’s also based on an XML file to communicate the URLs, and is codec-
agnostic.  They reuse the already existing 3GPP container format.  As far as I know, there are
currently no implementations of this standard.

 MPEG is currently drafting “Dynamic Adaptive HTTP Streaming”.  It is considering both the
3GPP and the Microsoft proposal for standardization.

Towards unified streaming

Beside the obvious differences in the current implementations, there are some similarities as well:
the three major players all support H.264 for the video codec; AAC is the common audio codec.  We
can use this fact to our advantage and encode the content only once (per quality).  The raw video
and audio streams are then wrapped in a container (e.g. fMP4, F4F or MPEG-2 TS).  From a com-
putational point of view, encoding is very intensive, while (re)wrapping is very simple.

We can take this idea one step further and choose a single disk format: the encoders output to this
common format, which is re-wrapped into the correct format on-the-fly upon request.  This effectively
reduces the required disk space by a factor of three, at the cost of a slightly increased workload.
This solution is actually used by Microsoft’s IIS server: it can be configured to (also) stream in the

3. http://learn.iis.net/page.aspx/684/smooth-streaming-transport-protocol

4. http://tools.ietf.org/html/draft-pantos-http-live-streaming-04

5. http://help.adobe.com/en_US/HTTPStreaming/1.0/Using/WS9463dbe8dbe45c4c-
1ae425bf126054c4d3f-7fff.html

6. http://www.3gpp.org/ftp/Specs/html-info/26247.htm
EBU TECHNICAL REVIEW – 2011 Q1 5 / 6
N. Laukens

http://learn.iis.net/page.aspx/684/smooth-streaming-transport-protocol
http://tools.ietf.org/html/draft-pantos-http-live-streaming-04
http://help.adobe.com/en_US/HTTPStreaming/1.0/Using/WS9463dbe8dbe45c4c-1ae425bf126054c4d3f-7fff.html
http://help.adobe.com/en_US/HTTPStreaming/1.0/Using/WS9463dbe8dbe45c4c-1ae425bf126054c4d3f-7fff.html
http://www.3gpp.org/ftp/Specs/html-info/26247.htm


STREAMING
Apple format.  Apple-compatible chunks are created automatically from their Smooth Streaming
equivalents by the server.

We can go one step further, and also unify the streaming format.  The rewrapping can be done by
the client.  In this scenario, it’s most probable that the format will be Apple’s, since there is no easy
way to incorporate additional rewrapping logic in the iPhone/iPod/iPad product family.  Both Silver-
light and Flash have embedded support for application logic, so rewrapping code can be delivered
along with the player.  While this might seem far-fetched, a Dutch company Code Shop already pro-
vides a commercial module that plays a Smooth Stream inside a Flash player.

Conclusions

Adaptive streaming techniques are a major step towards a good quality of experience for video
delivery over the public Internet.  It uses the standard HTTP protocol to be firewall-compatible.  In
addition, HTTP provides extensive caching capabilities which allow the delivery to scale much easier
than other protocols.  All adaptivity is implemented on the client side, which can use whatever met-
rics available to it.  All implementations use network bandwidth, but screen resolution, CPU power or
user preferences are also possible.

Future evolution of these techniques may provide better support for variable-bitrate (VBR) streams.
Currently the qualities are denoted by a single number representing the average bitrate.  But when
streams vary widely in bitrate to accommodate varying image complexity, things can go wrong: a cli-
ent estimating 5 Mbit/s of network bandwidth may try to download the 4 Mbit/s-on-average version,
only to find out that this particular time chunk is actually 9 Mbit/s, hence failing to download in time.

This version: 4 February 2011

As a telecommunications engineer, Niels Laukens has an academic background in
modern telecommunication systems, including IP-multicast, cryptographic and other
technologies.  His master thesis on unicast distribution control for multicast transmis-
sions received awards on several occasions.  During his first job as a networking and
security expert, he obtained hands-on experience of the possibilities and limitations
of real-life IP networks.

Currently, as a senior researcher in the R&D department of VRT, Mr Laukens works
on broadband distribution issues.  His main focus is on the back end of the distribu-
tion chain, encompassing encoding and server software, and on back-end architec-
ture design and development.  Recent projects include adaptive streaming
technologies and scalable server architectures.

Published by the European Broadcasting Union, Geneva, Switzerland

ISSN: 1609-1469

Editeur Responsable: Lieven Vermaele

Editor: Mike Meyer

E-mail: tech@ebu.ch

The responsibility for views expressed in this article
rests solely with the author
EBU TECHNICAL REVIEW – 2011 Q1 6 / 6
N. Laukens

mailto:tech@ebu.ch

